Department of Computer Science, American International University-Bangladesh (AIUB), Dhaka 1229, Bangladesh.
School of IT Convergence, University of Ulsan, Ulsan 44610, Republic of Korea.
Bioinformatics. 2020 Dec 30;36(Suppl_2):i762-i769. doi: 10.1093/bioinformatics/btaa840.
SUMMARY: In systems biology, it is challenging to accurately infer a regulatory network from time-series gene expression data, and a variety of methods have been proposed. Most of them were computationally inefficient in inferring very large networks, though, because of the increasing number of candidate regulatory genes. Although a recent approach called GABNI (genetic algorithm-based Boolean network inference) was presented to resolve this problem using a genetic algorithm, there is room for performance improvement because it employed a limited representation model of regulatory functions.In this regard, we devised a novel genetic algorithm combined with a neural network for the Boolean network inference, where a neural network is used to represent the regulatory function instead of an incomplete Boolean truth table used in the GABNI. In addition, our new method extended the range of the time-step lag parameter value between the regulatory and the target genes for more flexible representation of the regulatory function. Extensive simulations with the gene expression datasets of the artificial and real networks were conducted to compare our method with five well-known existing methods including GABNI. Our proposed method significantly outperformed them in terms of both structural and dynamics accuracy. CONCLUSION: Our method can be a promising tool to infer a large-scale Boolean regulatory network from time-series gene expression data. AVAILABILITY AND IMPLEMENTATION: The source code is freely available at https://github.com/kwon-uou/NNBNI. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.
摘要:在系统生物学中,从时间序列基因表达数据中准确推断调控网络是一项具有挑战性的任务,已经提出了多种方法。然而,由于候选调控基因数量的增加,大多数方法在推断非常大的网络时计算效率不高。尽管最近提出了一种称为 GABNI(基于遗传算法的布尔网络推断)的方法,通过遗传算法来解决这个问题,但由于它使用了有限的调控功能表示模型,因此仍有改进性能的空间。在这方面,我们设计了一种新的遗传算法结合神经网络用于布尔网络推断,其中神经网络用于表示调控功能,而不是 GABNI 中使用的不完整的布尔真值表。此外,我们的新方法扩展了调控基因和靶基因之间的时间步长滞后参数值的范围,以便更灵活地表示调控功能。我们使用人工和真实网络的基因表达数据集对我们的方法进行了广泛的模拟,并与包括 GABNI 在内的五种著名的现有方法进行了比较。在结构和动力学准确性方面,我们的方法明显优于其他方法。 结论:我们的方法可以成为从时间序列基因表达数据中推断大规模布尔调控网络的有前途的工具。 可用性和实现:源代码可在 https://github.com/kwon-uou/NNBNI 上免费获得。 补充信息:补充数据可在生物信息学在线获得。
Bioinformatics. 2020-12-30
Bioinformatics. 2018-9-1
Bioinformatics. 2020-1-15
PLoS One. 2024
Bioinformatics. 2021-1-29