文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

一种从时间序列基因表达推断布尔网络的神经进化方法。

A neuro-evolution approach to infer a Boolean network from time-series gene expressions.

机构信息

Department of Computer Science, American International University-Bangladesh (AIUB), Dhaka 1229, Bangladesh.

School of IT Convergence, University of Ulsan, Ulsan 44610, Republic of Korea.

出版信息

Bioinformatics. 2020 Dec 30;36(Suppl_2):i762-i769. doi: 10.1093/bioinformatics/btaa840.


DOI:10.1093/bioinformatics/btaa840
PMID:33381823
Abstract

SUMMARY: In systems biology, it is challenging to accurately infer a regulatory network from time-series gene expression data, and a variety of methods have been proposed. Most of them were computationally inefficient in inferring very large networks, though, because of the increasing number of candidate regulatory genes. Although a recent approach called GABNI (genetic algorithm-based Boolean network inference) was presented to resolve this problem using a genetic algorithm, there is room for performance improvement because it employed a limited representation model of regulatory functions.In this regard, we devised a novel genetic algorithm combined with a neural network for the Boolean network inference, where a neural network is used to represent the regulatory function instead of an incomplete Boolean truth table used in the GABNI. In addition, our new method extended the range of the time-step lag parameter value between the regulatory and the target genes for more flexible representation of the regulatory function. Extensive simulations with the gene expression datasets of the artificial and real networks were conducted to compare our method with five well-known existing methods including GABNI. Our proposed method significantly outperformed them in terms of both structural and dynamics accuracy. CONCLUSION: Our method can be a promising tool to infer a large-scale Boolean regulatory network from time-series gene expression data. AVAILABILITY AND IMPLEMENTATION: The source code is freely available at https://github.com/kwon-uou/NNBNI. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.

摘要

摘要:在系统生物学中,从时间序列基因表达数据中准确推断调控网络是一项具有挑战性的任务,已经提出了多种方法。然而,由于候选调控基因数量的增加,大多数方法在推断非常大的网络时计算效率不高。尽管最近提出了一种称为 GABNI(基于遗传算法的布尔网络推断)的方法,通过遗传算法来解决这个问题,但由于它使用了有限的调控功能表示模型,因此仍有改进性能的空间。在这方面,我们设计了一种新的遗传算法结合神经网络用于布尔网络推断,其中神经网络用于表示调控功能,而不是 GABNI 中使用的不完整的布尔真值表。此外,我们的新方法扩展了调控基因和靶基因之间的时间步长滞后参数值的范围,以便更灵活地表示调控功能。我们使用人工和真实网络的基因表达数据集对我们的方法进行了广泛的模拟,并与包括 GABNI 在内的五种著名的现有方法进行了比较。在结构和动力学准确性方面,我们的方法明显优于其他方法。 结论:我们的方法可以成为从时间序列基因表达数据中推断大规模布尔调控网络的有前途的工具。 可用性和实现:源代码可在 https://github.com/kwon-uou/NNBNI 上免费获得。 补充信息:补充数据可在生物信息学在线获得。

相似文献

[1]
A neuro-evolution approach to infer a Boolean network from time-series gene expressions.

Bioinformatics. 2020-12-30

[2]
A novel constrained genetic algorithm-based Boolean network inference method from steady-state gene expression data.

Bioinformatics. 2021-7-12

[3]
A Boolean network inference from time-series gene expression data using a genetic algorithm.

Bioinformatics. 2018-9-1

[4]
ATEN: And/Or tree ensemble for inferring accurate Boolean network topology and dynamics.

Bioinformatics. 2020-1-15

[5]
MICRAT: a novel algorithm for inferring gene regulatory networks using time series gene expression data.

BMC Syst Biol. 2018-12-14

[6]
A novel mutual information-based Boolean network inference method from time-series gene expression data.

PLoS One. 2017-2-8

[7]
LogBTF: gene regulatory network inference using Boolean threshold network model from single-cell gene expression data.

Bioinformatics. 2023-5-4

[8]
SAILoR: Structure-Aware Inference of Logic Rules.

PLoS One. 2024

[9]
PoLoBag: Polynomial Lasso Bagging for signed gene regulatory network inference from expression data.

Bioinformatics. 2021-1-29

[10]
LogicGep: Boolean networks inference using symbolic regression from time-series transcriptomic profiling data.

Brief Bioinform. 2024-5-23

引用本文的文献

[1]
LBF-MI: Limited Boolean Functions and Mutual Information to Infer a Gene Regulatory Network from Time-Series Gene Expression Data.

Genes (Basel). 2024-11-27

[2]
LogicGep: Boolean networks inference using symbolic regression from time-series transcriptomic profiling data.

Brief Bioinform. 2024-5-23

[3]
SAILoR: Structure-Aware Inference of Logic Rules.

PLoS One. 2024

[4]
Review and assessment of Boolean approaches for inference of gene regulatory networks.

Heliyon. 2022-8-9

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索