School of Computer Science, University of Birmingham, Birmingham B15 2TT, UK.
College of Computer Science and Software Engineering, Shenzhen University, Shenzhen 518060, China.
Bioinformatics. 2020 Jan 15;36(2):578-585. doi: 10.1093/bioinformatics/btz563.
Inferring gene regulatory networks from gene expression time series data is important for gaining insights into the complex processes of cell life. A popular approach is to infer Boolean networks. However, it is still a pressing open problem to infer accurate Boolean networks from experimental data that are typically short and noisy.
To address the problem, we propose a Boolean network inference algorithm which is able to infer accurate Boolean network topology and dynamics from short and noisy time series data. The main idea is that, for each target gene, we use an And/Or tree ensemble algorithm to select prime implicants of which each is a conjunction of a set of input genes. The selected prime implicants are important features for predicting the states of the target gene. Using these important features we then infer the Boolean function of the target gene. Finally, the Boolean functions of all target genes are combined as a Boolean network. Using the data generated from artificial and real-world gene regulatory networks, we show that our algorithm can infer more accurate Boolean network topology and dynamics from short and noisy time series data than other algorithms. Our algorithm enables us to gain better insights into complex regulatory mechanisms of cell life.
Package ATEN is freely available at https://github.com/ningshi/ATEN.
Supplementary data are available at Bioinformatics online.
从基因表达时间序列数据推断基因调控网络对于深入了解细胞生命的复杂过程至关重要。一种流行的方法是推断布尔网络。然而,从通常较短且嘈杂的实验数据中推断出准确的布尔网络仍然是一个紧迫的开放问题。
为了解决这个问题,我们提出了一种布尔网络推断算法,该算法能够从短且嘈杂的时间序列数据中推断出准确的布尔网络拓扑结构和动态。主要思想是,对于每个目标基因,我们使用 And/Or 树集成算法来选择每个是一组输入基因的合取的主要蕴涵。选择的主要蕴涵是预测目标基因状态的重要特征。然后,我们使用这些重要特征推断目标基因的布尔函数。最后,将所有目标基因的布尔函数组合成一个布尔网络。使用人工和真实基因调控网络生成的数据,我们表明我们的算法可以从短且嘈杂的时间序列数据中推断出比其他算法更准确的布尔网络拓扑结构和动态。我们的算法使我们能够更好地了解细胞生命的复杂调控机制。
ATEN 包可在 https://github.com/ningshi/ATEN 上免费获得。
补充数据可在 Bioinformatics 在线获得。