Suppr超能文献

大环配体对镧系元素离子具有前所未有的尺寸选择性模式。

Macrocyclic Ligands with an Unprecedented Size-Selectivity Pattern for the Lanthanide Ions.

机构信息

Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States.

出版信息

J Am Chem Soc. 2020 Aug 5;142(31):13500-13506. doi: 10.1021/jacs.0c05217. Epub 2020 Jul 22.

Abstract

Lanthanides (Ln) are critical materials used for many important applications, often in the form of coordination compounds. Tuning the thermodynamic stability of these compounds is a general concern, which is not readily achieved due to the similar coordination chemistry of lanthanides. Herein, we report two 18-membered macrocyclic ligands called macrodipa and macrotripa that show for the first time a dual selectivity toward both the light, large Ln ions and the heavy, small Ln ions, as determined by potentiometric titrations. The lanthanide complexes of these ligands were investigated by NMR spectroscopy and X-ray crystallography, which revealed the occurrence of a significant conformational toggle between a 10-coordinate Conformation A and an 8-coordinate Conformation B that accommodates Ln ions of different sizes. The origin of this selectivity pattern was further supported by density functional theory (DFT) calculations, which show the complementary effects of ligand strain energy and metal-ligand binding energy that contribute to this conformational switch. This work demonstrates how novel ligand design strategies can be applied to tune the selectivity pattern for the Ln ions.

摘要

镧系元素(Ln)是许多重要应用中关键的材料,通常以配位化合物的形式存在。由于镧系元素的配位化学相似,因此调节这些化合物的热力学稳定性是一个普遍关注的问题,而这并不容易实现。在此,我们报告了两种 18 元大环配体,分别称为 macrodipa 和 macrotripa,它们首次表现出对轻、大镧系元素离子和重、小镧系元素离子的双重选择性,这是通过电位滴定法确定的。通过 NMR 光谱和 X 射线晶体学研究了这些配体的镧系元素配合物,结果表明存在从 10 配位的 Conformation A 到 8 配位的 Conformation B 的显著构象翻转,这种构象翻转可容纳不同大小的镧系元素离子。这种选择性模式的起源进一步得到了密度泛函理论(DFT)计算的支持,该计算表明配体应变能和金属-配体结合能的互补效应对这种构象转变有贡献。这项工作展示了如何应用新的配体设计策略来调节镧系元素离子的选择性模式。

相似文献

1
Macrocyclic Ligands with an Unprecedented Size-Selectivity Pattern for the Lanthanide Ions.
J Am Chem Soc. 2020 Aug 5;142(31):13500-13506. doi: 10.1021/jacs.0c05217. Epub 2020 Jul 22.
2
Macrocyclic receptor exhibiting unprecedented selectivity for light lanthanides.
J Am Chem Soc. 2009 Mar 11;131(9):3331-41. doi: 10.1021/ja808534w.
3
Chelating Rare-Earth Metals (Ln) and Ac with the Dual-Size-Selective Macrocyclic Ligand Py-Macrodipa.
Inorg Chem. 2022 Aug 15;61(32):12847-12855. doi: 10.1021/acs.inorgchem.2c01998. Epub 2022 Aug 1.
5
Implementing f-Block Metal Ions in Medicine: Tuning the Size Selectivity of Expanded Macrocycles.
Inorg Chem. 2019 Aug 19;58(16):10483-10500. doi: 10.1021/acs.inorgchem.9b01277. Epub 2019 Jun 27.
6
Py-Macrodipa: A Janus Chelator Capable of Binding Medicinally Relevant Rare-Earth Radiometals of Disparate Sizes.
J Am Chem Soc. 2021 Jul 14;143(27):10429-10440. doi: 10.1021/jacs.1c05339. Epub 2021 Jun 30.
9
Solution structure of Ln(III) complexes with macrocyclic ligands through theoretical evaluation of 1H NMR contact shifts.
Inorg Chem. 2012 Dec 17;51(24):13419-29. doi: 10.1021/ic302322r. Epub 2012 Dec 6.

引用本文的文献

1
Decadentate Acyclic Chelators for Lanthanum Radiopharmaceuticals.
J Med Chem. 2025 Aug 28;68(16):17823-17839. doi: 10.1021/acs.jmedchem.5c01558. Epub 2025 Aug 19.
3
Modulating metal-centered dimerization of a lanthanide chaperone protein for separation of light lanthanides.
Proc Natl Acad Sci U S A. 2024 Nov 5;121(45):e2410926121. doi: 10.1073/pnas.2410926121. Epub 2024 Oct 28.
5
Chelation of [In]In with the dual-size-selective macrocycles py-macrodipa and py-macrodipa.
Dalton Trans. 2024 Sep 10;53(35):14634-14647. doi: 10.1039/d4dt02146k.
6
PYTA: a universal chelator for advancing the theranostic palette of nuclear medicine.
Chem Sci. 2024 Jun 17;15(29):11279-11286. doi: 10.1039/d3sc06854d. eCollection 2024 Jul 24.
7
Construction of the Bioconjugate Py-Macrodipa-PSMA and Its In Vivo Investigations with Large La and Small Sc Radiometal Ions.
Eur J Inorg Chem. 2023 Dec 12;26(35). doi: 10.1002/ejic.202300457. Epub 2023 Sep 20.
8
A Modular Strategy for the Synthesis of Macrocycles and Medium-Sized Rings via Cyclization/Ring Expansion Cascade Reactions.
J Am Chem Soc. 2024 Feb 28;146(8):5702-5711. doi: 10.1021/jacs.4c00659. Epub 2024 Feb 19.
9
Genomic characterization of rare earth binding by Shewanella oneidensis.
Sci Rep. 2023 Sep 25;13(1):15975. doi: 10.1038/s41598-023-42742-6.
10
A Simple yet Efficient Hydrophilic Phenanthroline-Based Ligand for Selective Am(III) Separation under High Acidity.
ACS Cent Sci. 2023 Jul 14;9(8):1642-1649. doi: 10.1021/acscentsci.3c00504. eCollection 2023 Aug 23.

本文引用的文献

1
Oxyaapa: A Picolinate-Based Ligand with Five Oxygen Donors that Strongly Chelates Lanthanides.
Inorg Chem. 2020 Apr 6;59(7):5116-5132. doi: 10.1021/acs.inorgchem.0c00372. Epub 2020 Mar 27.
2
Establishing Radiolanthanum Chemistry for Targeted Nuclear Medicine Applications.
Chemistry. 2020 Jan 27;26(6):1238-1242. doi: 10.1002/chem.201905202. Epub 2020 Jan 9.
3
Implementing f-Block Metal Ions in Medicine: Tuning the Size Selectivity of Expanded Macrocycles.
Inorg Chem. 2019 Aug 19;58(16):10483-10500. doi: 10.1021/acs.inorgchem.9b01277. Epub 2019 Jun 27.
4
Rare earth elements: Mendeleev's bane, modern marvels.
Science. 2019 Feb 1;363(6426):489-493. doi: 10.1126/science.aau7628. Epub 2019 Jan 31.
5
Rapid Dissolution of BaSO by Macropa, an 18-Membered Macrocycle with High Affinity for Ba.
J Am Chem Soc. 2018 Dec 12;140(49):17071-17078. doi: 10.1021/jacs.8b08704. Epub 2018 Nov 28.
6
An Eighteen-Membered Macrocyclic Ligand for Actinium-225 Targeted Alpha Therapy.
Angew Chem Int Ed Engl. 2017 Nov 13;56(46):14712-14717. doi: 10.1002/anie.201709532. Epub 2017 Oct 16.
7
Lanthanide-Activated Phosphors Based on 4f-5d Optical Transitions: Theoretical and Experimental Aspects.
Chem Rev. 2017 Mar 8;117(5):4488-4527. doi: 10.1021/acs.chemrev.6b00691. Epub 2017 Feb 27.
8
Lanthanides: Applications in Cancer Diagnosis and Therapy.
J Med Chem. 2016 Jul 14;59(13):6012-24. doi: 10.1021/acs.jmedchem.5b01975. Epub 2016 Feb 19.
9
Lower denticity leading to higher stability: structural and solution studies of Ln(III)-OBETA complexes.
Inorg Chem. 2014 Dec 1;53(23):12499-511. doi: 10.1021/ic5020225. Epub 2014 Nov 11.
10
Understanding stability trends along the lanthanide series.
Chemistry. 2014 Apr 1;20(14):3974-81. doi: 10.1002/chem.201304469. Epub 2014 Feb 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验