Mao Yinzhe, Zhao Lou, Liu Chunshan, Ling Minhao
School of Communication Engineering, Hangzhou Dianzi University, Hangzhou 310018, China.
Sensors (Basel). 2023 Oct 18;23(20):8551. doi: 10.3390/s23208551.
In this paper, we propose a novel low-complexity hand gesture recognition framework via a multiple Frequency Modulation Continuous Wave (FMCW) radar-based sensing system. In this considered system, two radars are deployed distributively to acquire motion vectors from different observation perspectives. We first independently extract reflection points of the interested target from different radars by applying the proposed neighboring reflection points detection method after processing the traditional 2-dimensional Fast Fourier Transform (2D-FFT). The obtained sufficient corresponding information of detected reflection points, e.g., distances, velocities, and angle information, can be exploited to synthesize motion velocity vectors to achieve a high signal-to-noise ratio (SNR) performance, which does not require knowledge of the relative position of the two radars. Furthermore, we utilize a long short-term memory (LSTM) network as well as the synthesized motion velocity vectors to classify different gestures, which can achieve a significantly high accuracy of gesture recognition with a 1600-sample data set, e.g., 98.0%. The experimental results also illustrate the robustness of the proposed gesture recognition systems, e.g., changing the environment background and adding new gesture performers.
在本文中,我们提出了一种新颖的低复杂度手势识别框架,该框架通过基于多频连续波(FMCW)雷达的传感系统实现。在该系统中,两个雷达分布式部署,以从不同观测视角获取运动矢量。我们首先在处理传统二维快速傅里叶变换(2D-FFT)之后,通过应用所提出的相邻反射点检测方法,从不同雷达中独立提取感兴趣目标的反射点。所获得的已检测反射点的足够对应信息,例如距离、速度和角度信息,可用于合成运动速度矢量,以实现高信噪比(SNR)性能,这并不需要知道两个雷达的相对位置。此外,我们利用长短期记忆(LSTM)网络以及合成的运动速度矢量来对不同手势进行分类,在1600个样本数据集上,例如能达到98.0%的显著高精度手势识别率。实验结果还说明了所提出的手势识别系统的鲁棒性,例如改变环境背景和增加新的手势执行者。