Suppr超能文献

贝宁:生物增强型网络推理。

BENIN: Biologically enhanced network inference.

机构信息

Computer Science and Software Engineering, Concordia University, 1455 Boulevard de Maisonneuve Ouest, Montreal, Quebec H3G1M8, Canada.

出版信息

J Bioinform Comput Biol. 2020 Jun;18(3):2040007. doi: 10.1142/S0219720020400077.

Abstract

Gene regulatory network inference is one of the central problems in computational biology. We need models that integrate the variety of data available in order to use their complementarity information to overcome the issues of noisy and limited data. : iologically nhanced etwork ference is our proposal to integrate data and infer more accurate networks. is a general framework that jointly considers different types of prior knowledge with expression datasets to improve the network inference. The method states the network inference as a feature selection problem and uses a popular penalized regression method, the , combined with bootstrap resampling to solve it. significantly outperforms the state-of-the-art methods on the simulated data from the DREAM 4 challenge when combining genome-wide location data, knockout gene expression data, and time series expression data.

摘要

基因调控网络推断是计算生物学中的核心问题之一。我们需要整合各种可用的数据模型,以利用它们的互补信息来克服数据噪声和有限的问题。生物增强网络推断是我们提出的一种整合数据并推断更准确网络的方法。这是一个通用框架,它联合考虑了不同类型的先验知识和表达数据集,以提高网络推断的准确性。该方法将网络推断表述为特征选择问题,并使用一种流行的惩罚回归方法,即,结合引导重采样来解决问题。当结合全基因组位置数据、基因敲除表达数据和时间序列表达数据时,该方法在 DREAM4 挑战赛的模拟数据上的表现明显优于最先进的方法。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验