Zhang Bingkai, Weng Mouyi, Lin Zhan, Feng Yancong, Yang Luyi, Wang Lin-Wang, Pan Feng
School of Advanced Materials, Peking University Shenzhen Graduate School, Shenzhen, 518055, China.
School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China.
Small. 2020 Mar;16(11):e1906374. doi: 10.1002/smll.201906374. Epub 2020 Feb 20.
Critical to the development of all-solid-state lithium-ion batteries technology are novel solid-state electrolytes with high ionic conductivity and robust stability under inorganic solid-electrolyte operating conditions. Herein, by using density functional theory and molecular dynamics, a mixed oxygen-sulfur-based Li-superionic conductor is screened out from the local chemical structure of β-Li PS to discover novel Li P Ge S O (LPGSO) with high ionic conductivity and high stability under thermal, moist, and electrochemical conditions, which causes oxygenation at specific sites to improve the stability and selective sulfuration to provide an O-S mixed path by Li-S/O structure units with coordination number between 3 and 4 for fast Li-cooperative conduction. Furthermore, LPGSO exhibits a quasi-isotropic 3D Li-ion cooperative diffusion with a lesser migration barrier (≈0.19 eV) compared to its sulfide-analog Li P Ge S . The theoretical ionic conductivity of this conductor at room temperature is as high as ≈30.0 mS cm , which is among the best in current solid-state electrolytes. Such an oxy-sulfide synergistic effect and Li-ion cooperative migration mechanism would enable the engineering of next-generation electrolyte materials with desirable safety and high ionic conductivity, for possible application in the near future.
对于全固态锂离子电池技术的发展至关重要的是具有高离子电导率且在无机固体电解质工作条件下具有强大稳定性的新型固态电解质。在此,通过使用密度泛函理论和分子动力学,从β-Li₂PS₃的局部化学结构中筛选出一种基于氧硫的混合锂超离子导体,以发现新型的Li₃PGeS₂O₂(LPGSO),其在热、湿和电化学条件下具有高离子电导率和高稳定性,这会在特定位置发生氧化以提高稳定性,并通过具有3至4配位数的Li-S/O结构单元进行选择性硫化以提供O-S混合路径,实现快速的锂协同传导。此外,与硫化物类似物Li₃PGeS₃相比,LPGSO表现出准各向同性的三维锂离子协同扩散,迁移势垒较小(≈0.19 eV)。该导体在室温下的理论离子电导率高达≈30.0 mS cm⁻¹,是目前固态电解质中最好的之一。这种氧硫化物协同效应和锂离子协同迁移机制将有助于设计具有理想安全性和高离子电导率的下一代电解质材料,有望在不久的将来得到应用。