Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia.
Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia.
Mol Biol Evol. 2020 Dec 16;37(12):3525-3549. doi: 10.1093/molbev/msaa186.
Methylation is a common posttranslational modification of arginine and lysine in eukaryotic proteins. Methylproteomes are best characterized for higher eukaryotes, where they are functionally expanded and evolved complex regulation. However, this is not the case for protist species evolved from the earliest eukaryotic lineages. Here, we integrated bioinformatic, proteomic, and drug-screening data sets to comprehensively explore the methylproteome of Giardia duodenalis-a deeply branching parasitic protist. We demonstrate that Giardia and related diplomonads lack arginine-methyltransferases and have remodeled conserved RGG/RG motifs targeted by these enzymes. We also provide experimental evidence for methylarginine absence in proteomes of Giardia but readily detect methyllysine. We bioinformatically infer 11 lysine-methyltransferases in Giardia, including highly diverged Su(var)3-9, Enhancer-of-zeste and Trithorax proteins with reduced domain architectures, and novel annotations demonstrating conserved methyllysine regulation of eukaryotic elongation factor 1 alpha. Using mass spectrometry, we identify more than 200 methyllysine sites in Giardia, including in species-specific gene families involved in cytoskeletal regulation, enriched in coiled-coil features. Finally, we use known methylation inhibitors to show that methylation plays key roles in replication and cyst formation in this parasite. This study highlights reduced methylation enzymes, sites, and functions early in eukaryote evolution, including absent methylarginine networks in the Diplomonadida. These results challenge the view that arginine methylation is eukaryote conserved and demonstrate that functional compensation of methylarginine was possible preceding expansion and diversification of these key networks in higher eukaryotes.
甲基化是真核蛋白中精氨酸和赖氨酸的常见翻译后修饰。甲基蛋白质组在高等真核生物中得到了最好的描述,在那里它们的功能得到了扩展,并进化出了复杂的调控机制。然而,对于从最早的真核生物谱系进化而来的原生动物物种来说,情况并非如此。在这里,我们整合了生物信息学、蛋白质组学和药物筛选数据集,全面探索了十二指肠贾第虫的甲基蛋白质组——一种深度分支的寄生原生动物。我们证明,贾第虫和相关的双滴虫缺乏精氨酸甲基转移酶,并对这些酶靶向的保守 RGG/RG 基序进行了改造。我们还提供了在贾第虫蛋白质组中缺乏甲基精氨酸的实验证据,但可以很容易地检测到甲基赖氨酸。我们从生物信息学上推断出贾第虫中有 11 种赖氨酸甲基转移酶,包括高度分化的 Su(var)3-9、增强子-of-zeste 和 Trithorax 蛋白,它们的结构域结构减少,以及新的注释表明真核延伸因子 1 alpha 的保守甲基赖氨酸调控。通过质谱分析,我们在贾第虫中鉴定了 200 多个甲基赖氨酸位点,包括参与细胞骨架调节的物种特异性基因家族,富含卷曲螺旋特征。最后,我们使用已知的甲基化抑制剂表明,甲基化在寄生虫的复制和囊形成中起着关键作用。这项研究强调了在真核生物进化早期减少的甲基化酶、位点和功能,包括 Diplomonadida 中不存在的甲基精氨酸网络。这些结果挑战了精氨酸甲基化在真核生物中保守的观点,并表明在这些关键网络在高等真核生物中扩张和多样化之前,甲基精氨酸的功能补偿是可能的。