Suppr超能文献

并非所有 SET 都用于甲基化:真核蛋白甲基转移酶的进化。

Not all Is SET for Methylation: Evolution of Eukaryotic Protein Methyltransferases.

机构信息

Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR, USA.

出版信息

Methods Mol Biol. 2022;2529:3-40. doi: 10.1007/978-1-0716-2481-4_1.

Abstract

Dynamic posttranslational modifications to canonical histones that constitute the nucleosome (H2A, H2B, H3, and H4) control all aspects of enzymatic transactions with DNA. Histone methylation has been studied heavily for the past 20 years, and our mechanistic understanding of the control and function of individual methylation events on specific histone arginine and lysine residues has been greatly improved over the past decade, driven by excellent new tools and methods. Here, we will summarize what is known about the distribution and some of the functions of protein methyltransferases from all major eukaryotic supergroups. The main conclusion is that protein, and specifically histone, methylation is an ancient process. Many taxa in all supergroups have lost some subfamilies of both protein arginine methyltransferases (PRMT) and the heavily studied SET domain lysine methyltransferases (KMT). Over time, novel subfamilies, especially of SET domain proteins, arose. We use the interactions between H3K27 and H3K36 methylation as one example for the complex circuitry of histone modifications that make up the "histone code," and we discuss one recent example (Paramecium Ezl1) for how extant enzymes that may resemble more ancient SET domain KMTs are able to modify two lysine residues that have divergent functions in plants, fungi, and animals. Complexity of SET domain KMT function in the well-studied plant and animal lineages arose not only by gene duplication but also acquisition of novel DNA- and histone-binding domains in certain subfamilies.

摘要

组蛋白的经典翻译后修饰控制着与 DNA 的酶促反应的各个方面,这些组蛋白构成了核小体(H2A、H2B、H3 和 H4)。在过去的 20 年中,组蛋白甲基化受到了广泛的研究,过去十年中,由于出色的新工具和方法的出现,我们对特定组蛋白精氨酸和赖氨酸残基上个别甲基化事件的控制和功能的机制理解有了很大的提高。在这里,我们将总结从所有主要真核超群中获得的关于蛋白质甲基转移酶的分布和一些功能的知识。主要结论是,蛋白质,特别是组蛋白甲基化是一个古老的过程。所有超群中的许多分类群都失去了一些蛋白质精氨酸甲基转移酶(PRMT)和研究较多的 SET 结构域赖氨酸甲基转移酶(KMT)的亚家族。随着时间的推移,新的亚家族,特别是 SET 结构域蛋白的亚家族出现了。我们以 H3K27 和 H3K36 甲基化之间的相互作用为例,讨论了构成“组蛋白密码”的组蛋白修饰的复杂电路,我们还讨论了最近的一个例子(Paramecium Ezl1),即现存的酶可能类似于更古老的 SET 结构域 KMT,如何能够修饰两个在植物、真菌和动物中具有不同功能的赖氨酸残基。在研究较多的植物和动物谱系中,SET 结构域 KMT 功能的复杂性不仅是由于基因复制,还由于某些亚家族获得了新的 DNA 和组蛋白结合域。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验