Suppr超能文献

测量乳腺癌全身治疗后白质完整性的下降:省略骨架化可提高敏感性。

Measuring decline in white matter integrity after systemic treatment for breast cancer: omitting skeletonization enhances sensitivity.

机构信息

Division of Psychosocial Research and Epidemiology, Netherlands Cancer Institute, Amsterdam, The Netherlands.

Brain and Cognition, Department of Psychology, University of Amsterdam, Nieuwe Achtergracht 129 B, Amsterdam, The Netherlands.

出版信息

Brain Imaging Behav. 2021 Jun;15(3):1191-1200. doi: 10.1007/s11682-020-00319-1.

Abstract

Chemotherapy for non-central nervous system cancers is associated with abnormalities in brain structure and function. Diffusion tensor imaging (DTI) allows for studying in vivo microstructural changes in brain white matter. Tract-based spatial statistics (TBSS) is a widely used processing pipeline in which DTI data are typically normalized to a generic DTI template and then 'skeletonized' to compensate for misregistration effects. However, this approach greatly reduces the overall white matter volume that is subjected to statistical analysis, leading to information loss. Here, we present a re-analysis of longitudinal data previously analyzed with standard TBSS (Menning et al., BIB 2018, 324-334). For our current approach, we constructed a pipeline with an optimized registration method in Advanced Normalization Tools (ANTs) where DTI data are registered to a study-specific, high-resolution T1 template and the skeletonization step is omitted. In a head to head comparison, we show that with our novel approach breast cancer survivors who had received chemotherapy plus or minus endocrine therapy (BC + SYST, n = 26) showed a global decline in overall FA that was not present in breast cancer survivors who did not receive systemic therapy (BC-SYST, n = 23) or women without a cancer diagnosis (no cancer controls, NC, n = 30). With the standard TBSS approach we did not find any group differences. Moreover, voxel-based analysis for our novel pipeline showed a widespread decline in FA in the BC + SYST compared to the NC group. Interestingly, the BC-SYST group also showed a decline in FA compared to the NC group, although in much less voxels. These results were not found with the standard TBSS approach. We demonstrate that a modified processing pipeline makes DTI data more sensitive to detecting changes in white matter integrity in non-CNS cancer patients after treatment, particularly chemotherapy.

摘要

非中枢神经系统癌症的化疗与大脑结构和功能的异常有关。弥散张量成像(DTI)可用于研究大脑白质的微观结构变化。基于束的空间统计学(TBSS)是一种广泛使用的处理管道,其中 DTI 数据通常标准化到通用的 DTI 模板,然后“骨架化”以补偿配准效果。然而,这种方法大大减少了进行统计分析的总体白质体积,导致信息丢失。在这里,我们重新分析了以前用标准 TBSS 分析的纵向数据(Menning 等人,BIB 2018,324-334)。对于我们当前的方法,我们构建了一个管道,该管道具有在高级归一化工具(ANTs)中优化的注册方法,其中 DTI 数据注册到特定于研究的高分辨率 T1 模板,并且省略了骨架化步骤。在头对头比较中,我们表明,与我们的新方法相比,接受化疗加或不加内分泌治疗的乳腺癌幸存者(BC+SYST,n=26)表现出整体 FA 下降,而未接受系统治疗的乳腺癌幸存者(BC-SYST,n=23)或没有癌症诊断的女性(无癌症对照组,NC,n=30)则没有。使用标准 TBSS 方法,我们没有发现任何组间差异。此外,我们的新管道的体素基分析显示,BC+SYST 组与 NC 组相比,FA 广泛下降。有趣的是,与 NC 组相比,BC-SYST 组的 FA 也下降了,尽管在较少的体素中。这些结果在使用标准 TBSS 方法时没有发现。我们证明,经过修改的处理管道使 DTI 数据更敏感,可以检测治疗后非 CNS 癌症患者白质完整性的变化,尤其是化疗后。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/16f8/8286227/1e7c8f1fd487/11682_2020_319_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验