强化学习在重症监护临床决策支持中的应用:全面综述。

Reinforcement Learning for Clinical Decision Support in Critical Care: Comprehensive Review.

机构信息

NUS Graduate School for Integrative Science and Engineering, National University of Singapore, Singapore, Singapore.

Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Singapore.

出版信息

J Med Internet Res. 2020 Jul 20;22(7):e18477. doi: 10.2196/18477.

Abstract

BACKGROUND

Decision support systems based on reinforcement learning (RL) have been implemented to facilitate the delivery of personalized care. This paper aimed to provide a comprehensive review of RL applications in the critical care setting.

OBJECTIVE

This review aimed to survey the literature on RL applications for clinical decision support in critical care and to provide insight into the challenges of applying various RL models.

METHODS

We performed an extensive search of the following databases: PubMed, Google Scholar, Institute of Electrical and Electronics Engineers (IEEE), ScienceDirect, Web of Science, Medical Literature Analysis and Retrieval System Online (MEDLINE), and Excerpta Medica Database (EMBASE). Studies published over the past 10 years (2010-2019) that have applied RL for critical care were included.

RESULTS

We included 21 papers and found that RL has been used to optimize the choice of medications, drug dosing, and timing of interventions and to target personalized laboratory values. We further compared and contrasted the design of the RL models and the evaluation metrics for each application.

CONCLUSIONS

RL has great potential for enhancing decision making in critical care. Challenges regarding RL system design, evaluation metrics, and model choice exist. More importantly, further work is required to validate RL in authentic clinical environments.

摘要

背景

基于强化学习 (RL) 的决策支持系统已经被应用于促进个性化护理的实施。本文旨在对重症监护环境中 RL 的应用进行全面综述。

目的

本次综述旨在调查关于重症监护临床决策支持中 RL 应用的文献,并深入了解应用各种 RL 模型的挑战。

方法

我们对以下数据库进行了广泛的搜索:PubMed、Google Scholar、电气和电子工程师协会 (IEEE)、ScienceDirect、Web of Science、医学文献分析与检索系统在线 (MEDLINE) 和荷兰医学文摘 (EMBASE)。纳入了过去 10 年(2010-2019 年)发表的应用 RL 进行重症监护的研究。

结果

我们共纳入了 21 篇论文,发现 RL 已被用于优化药物选择、药物剂量和干预时机,并针对个性化实验室值进行目标优化。我们进一步比较和对比了每个应用的 RL 模型设计和评估指标。

结论

RL 具有增强重症监护决策的巨大潜力。RL 系统设计、评估指标和模型选择方面存在挑战。更重要的是,需要进一步的工作来验证 RL 在真实临床环境中的应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d584/7400046/db161b81fbbc/jmir_v22i7e18477_fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索