文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

重症监护医学中的机器学习与人工智能:从基于规则的系统到前沿模型的关键重新校准

Machine Learning and Artificial Intelligence in Intensive Care Medicine: Critical Recalibrations from Rule-Based Systems to Frontier Models.

作者信息

Hadweh Pierre, Niset Alexandre, Salvagno Michele, Al Barajraji Mejdeddine, El Hadwe Salim, Taccone Fabio Silvio, Barrit Sami

机构信息

Sciense, New York, NY 10027, USA.

Pediatric Intensive Care Unit, Cliniques Universitaires Saint-Luc, 1200 Bruxelles, Belgium.

出版信息

J Clin Med. 2025 Jun 6;14(12):4026. doi: 10.3390/jcm14124026.


DOI:10.3390/jcm14124026
PMID:40565770
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12194786/
Abstract

Artificial intelligence (AI) and machine learning (ML) are rapidly transforming clinical decision support systems (CDSSs) in intensive care units (ICUs), where vast amounts of real-time data present both an opportunity and a challenge for timely clinical decision-making. Here, we trace the evolution of machine intelligence in critical care. This technology has been applied across key ICU domains such as early warning systems, sepsis management, mechanical ventilation, and diagnostic support. We highlight a transition from rule-based systems to more sophisticated machine learning approaches, including emerging frontier models. While these tools demonstrate strong potential to improve predictive performance and workflow efficiency, their implementation remains constrained by concerns around transparency, workflow integration, bias, and regulatory challenges. Ensuring the safe, effective, and ethical use of AI in intensive care will depend on validated, human-centered systems supported by transdisciplinary collaboration, technological literacy, prospective evaluation, and continuous monitoring.

摘要

人工智能(AI)和机器学习(ML)正在迅速改变重症监护病房(ICU)中的临床决策支持系统(CDSS),在这些病房中,大量实时数据为及时的临床决策既带来了机遇,也带来了挑战。在此,我们追溯重症监护中机器智能的发展历程。这项技术已应用于关键的ICU领域,如早期预警系统、脓毒症管理、机械通气和诊断支持。我们强调了从基于规则的系统向更复杂的机器学习方法的转变,包括新兴的前沿模型。虽然这些工具在提高预测性能和工作流程效率方面显示出强大潜力,但其实施仍受到透明度、工作流程整合、偏差和监管挑战等问题的限制。确保在重症监护中安全、有效地使用人工智能将依赖于经过验证的、以人为本的系统,这些系统得到跨学科合作、技术素养、前瞻性评估和持续监测的支持。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/051f/12194786/ae02a48a93d1/jcm-14-04026-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/051f/12194786/bece795b77d3/jcm-14-04026-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/051f/12194786/ae02a48a93d1/jcm-14-04026-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/051f/12194786/bece795b77d3/jcm-14-04026-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/051f/12194786/ae02a48a93d1/jcm-14-04026-g002.jpg

相似文献

[1]
Machine Learning and Artificial Intelligence in Intensive Care Medicine: Critical Recalibrations from Rule-Based Systems to Frontier Models.

J Clin Med. 2025-6-6

[2]
Artificial intelligence in critical care nursing: A scoping review.

Aust Crit Care. 2025-4-4

[3]
The dawn of a new era: can machine learning and large language models reshape QSP modeling?

J Pharmacokinet Pharmacodyn. 2025-6-16

[4]
The Use of Machine Learning for Analyzing Real-World Data in Disease Prediction and Management: Systematic Review.

JMIR Med Inform. 2025-6-19

[5]
Signs and symptoms to determine if a patient presenting in primary care or hospital outpatient settings has COVID-19.

Cochrane Database Syst Rev. 2022-5-20

[6]
Leadership in radiology in the era of technological advancements and artificial intelligence.

Eur Radiol. 2025-6-27

[7]
Machine Learning-Augmented Triage for Sepsis: Real-Time ICU Mortality Prediction Using SHAP-Explained Meta-Ensemble Models.

Biomedicines. 2025-6-12

[8]
Factors that impact on the use of mechanical ventilation weaning protocols in critically ill adults and children: a qualitative evidence-synthesis.

Cochrane Database Syst Rev. 2016-10-4

[9]
AI for IMPACTS Framework for Evaluating the Long-Term Real-World Impacts of AI-Powered Clinician Tools: Systematic Review and Narrative Synthesis.

J Med Internet Res. 2025-2-5

[10]
What makes a 'good' decision with artificial intelligence? A grounded theory study in paediatric care.

BMJ Evid Based Med. 2025-5-20

本文引用的文献

[1]
Generalizability of FDA-Approved AI-Enabled Medical Devices for Clinical Use.

JAMA Netw Open. 2025-4-1

[2]
Towards conversational diagnostic artificial intelligence.

Nature. 2025-4-9

[3]
Towards accurate differential diagnosis with large language models.

Nature. 2025-4-9

[4]
Robust Steganography Technique for Enhancing the Protection of Medical Records in Healthcare Informatics.

IEEE J Biomed Health Inform. 2025-3-24

[5]
HeartEnsembleNet: An Innovative Hybrid Ensemble Learning Approach for Cardiovascular Risk Prediction.

Healthcare (Basel). 2025-2-26

[6]
Leveraging Medical Knowledge Graphs Into Large Language Models for Diagnosis Prediction: Design and Application Study.

JMIR AI. 2025-2-24

[7]
AI for the hemodynamic assessment of critically ill and surgical patients: focus on clinical applications.

Ann Intensive Care. 2025-2-24

[8]
FUTURE-AI: international consensus guideline for trustworthy and deployable artificial intelligence in healthcare.

BMJ. 2025-2-5

[9]
Toward expert-level medical question answering with large language models.

Nat Med. 2025-3

[10]
A Primer on Reinforcement Learning in Medicine for Clinicians.

NPJ Digit Med. 2024-11-26

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索