Suppr超能文献

基于深度随机森林的特征融合进行面部年龄估计。

Feature fusion via Deep Random Forest for facial age estimation.

机构信息

Laboratory of LESIA, University of Biskra, Biskra, Algeria.

Laboratory of LI3C, University of Biskra, Biskra, Algeria.

出版信息

Neural Netw. 2020 Oct;130:238-252. doi: 10.1016/j.neunet.2020.07.006. Epub 2020 Jul 14.

Abstract

In the last few years, human age estimation from face images attracted the attention of many researchers in computer vision and machine learning fields. This is due to its numerous applications. In this paper, we propose a new architecture for age estimation based on facial images. It is mainly based on a cascade of classification trees ensembles, which are known recently as a Deep Random Forest. Our architecture is composed of two types of DRF. The first type extends and enhances the feature representation of a given facial descriptor. The second type operates on the fused form of all enhanced representations in order to provide a prediction for the age while taking into account the fuzziness property of the human age. While the proposed methodology is able to work with all kinds of image features, the face descriptors adopted in this work used off-the-shelf deep features allowing to retain both the rich deep features and the powerful enhancement and decision provided by the proposed architecture. Experiments conducted on six public databases prove the superiority of the proposed architecture over other state-of-the-art methods.

摘要

在过去的几年中,基于人脸图像的人类年龄估计引起了计算机视觉和机器学习领域许多研究人员的关注。这是由于它有许多应用。在本文中,我们提出了一种基于人脸图像的年龄估计新架构。它主要基于分类树集成的级联,最近被称为深度随机森林(Deep Random Forest)。我们的架构由两种类型的 DRF 组成。第一种类型扩展和增强了给定人脸描述符的特征表示。第二种类型则对所有增强表示的融合形式进行操作,以便在考虑人类年龄模糊性的情况下,提供年龄预测。虽然所提出的方法能够适用于各种图像特征,但本工作中采用的人脸描述符使用了现成的深度特征,这使得既保留了丰富的深度特征,又保留了所提出架构提供的强大增强和决策能力。在六个公共数据库上进行的实验证明了所提出架构相对于其他最先进方法的优越性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验