Suppr超能文献

基于深度森林模型的常规血检用于 COVID-19 诊断

Deep forest model for diagnosing COVID-19 from routine blood tests.

机构信息

Department of Computer Engineering, Kuwait University, Kuwait City, Kuwait.

Saint Elizabeths Hospital, Washington, DC, USA.

出版信息

Sci Rep. 2021 Aug 17;11(1):16682. doi: 10.1038/s41598-021-95957-w.

Abstract

The Coronavirus Disease 2019 (COVID-19) global pandemic has threatened the lives of people worldwide and posed considerable challenges. Early and accurate screening of infected people is vital for combating the disease. To help with the limited quantity of swab tests, we propose a machine learning prediction model to accurately diagnose COVID-19 from clinical and/or routine laboratory data. The model exploits a new ensemble-based method called the deep forest (DF), where multiple classifiers in multiple layers are used to encourage diversity and improve performance. The cascade level employs the layer-by-layer processing and is constructed from three different classifiers: extra trees, XGBoost, and LightGBM. The prediction model was trained and evaluated on two publicly available datasets. Experimental results show that the proposed DF model has an accuracy of 99.5%, sensitivity of 95.28%, and specificity of 99.96%. These performance metrics are comparable to other well-established machine learning techniques, and hence DF model can serve as a fast screening tool for COVID-19 patients at places where testing is scarce.

摘要

2019 年冠状病毒病(COVID-19)全球大流行威胁着全世界人民的生命安全,带来了巨大的挑战。早期、准确地筛选感染者对于对抗疾病至关重要。为了帮助应对拭子检测数量有限的问题,我们提出了一种机器学习预测模型,可根据临床和/或常规实验室数据准确诊断 COVID-19。该模型利用了一种称为深度森林(DF)的新集成方法,其中使用多个多层分类器来鼓励多样性并提高性能。级联层采用逐层处理,并由三个不同的分类器构成:随机森林、极端梯度提升和 LightGBM。预测模型在两个公开可用的数据集上进行了训练和评估。实验结果表明,所提出的 DF 模型的准确率为 99.5%,敏感度为 95.28%,特异性为 99.96%。这些性能指标与其他成熟的机器学习技术相当,因此 DF 模型可以作为在检测稀缺的地方快速筛查 COVID-19 患者的工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1709/8371014/5e61d1e1d89e/41598_2021_95957_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验