Suppr超能文献

机器学习赋能的傅里叶变换红外光谱血清分析对健康、过敏和 SIT 治疗的小鼠和人类进行分层。

Machine Learning-Empowered FTIR Spectroscopy Serum Analysis Stratifies Healthy, Allergic, and SIT-Treated Mice and Humans.

机构信息

Institute of Specific Prophylaxis and Tropical Medicine, Medical University of Vienna, 1090 Vienna, Austria.

Institute of Microbiology, Department of Pathobiology, University of Veterinary Medicine, 1210 Vienna, Austria.

出版信息

Biomolecules. 2020 Jul 16;10(7):1058. doi: 10.3390/biom10071058.

Abstract

The unabated global increase of allergic patients leads to an unmet need for rapid and inexpensive tools for the diagnosis of allergies and for monitoring the outcome of allergen-specific immunotherapy (SIT). In this proof-of-concept study, we investigated the potential of Fourier-Transform Infrared (FTIR) spectroscopy, a high-resolution and cost-efficient biophotonic method with high throughput capacities, to detect characteristic alterations in serum samples of healthy, allergic, and SIT-treated mice and humans. To this end, we used experimental models of ovalbumin (OVA)-induced allergic airway inflammation and allergen-specific tolerance induction in BALB/c mice. Serum collected before and at the end of the experiment was subjected to FTIR spectroscopy. As shown by our study, FTIR spectroscopy, combined with deep learning, can discriminate serum from healthy, allergic, and tolerized mice, which correlated with immunological data. Furthermore, to test the suitability of this biophotonic method for clinical diagnostics, serum samples from human patients were analyzed by FTIR spectroscopy. In line with the results from the mouse models, machine learning-assisted FTIR spectroscopy allowed to discriminate sera obtained from healthy, allergic, and SIT-treated humans, thereby demonstrating its potential for rapid diagnosis of allergy and clinical therapeutic monitoring of allergic patients.

摘要

全球过敏患者人数不断增加,这导致人们迫切需要快速且廉价的工具来诊断过敏,并监测过敏原特异性免疫疗法 (SIT) 的效果。在这项概念验证研究中,我们研究了傅里叶变换红外 (FTIR) 光谱的潜力,FTIR 光谱是一种具有高通量能力的高分辨率、低成本的生物光子学方法,能够检测健康、过敏和 SIT 治疗的小鼠和人类血清样本中的特征变化。为此,我们使用了卵清蛋白 (OVA) 诱导的过敏性气道炎症和 BALB/c 小鼠过敏原特异性耐受诱导的实验模型。在实验前后收集的血清进行了 FTIR 光谱分析。正如我们的研究所示,FTIR 光谱结合深度学习可以区分健康、过敏和耐受的小鼠的血清,这与免疫学数据相关。此外,为了测试这种生物光子学方法在临床诊断中的适用性,我们还通过 FTIR 光谱分析了人类患者的血清样本。与小鼠模型的结果一致,机器学习辅助的 FTIR 光谱可以区分健康、过敏和 SIT 治疗的人类获得的血清,从而证明了其在快速诊断过敏和临床监测过敏患者治疗效果方面的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/54db/7408032/acd8b66890d7/biomolecules-10-01058-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验