Suppr超能文献

傅里叶变换红外光谱高光谱成像与人工神经网络分析用于鉴定致病菌。

FT-IR Hyperspectral Imaging and Artificial Neural Network Analysis for Identification of Pathogenic Bacteria.

机构信息

ZBS6 Proteomics and Spectroscopy , Robert Koch-Institute , Seestrasse 10 , Berlin , D-13353 , Germany.

Faculty of Chemistry , Jagiellonian University , Gronostajowa 2 , 30-060 Krakow , Poland.

出版信息

Anal Chem. 2018 Aug 7;90(15):8896-8904. doi: 10.1021/acs.analchem.8b01024. Epub 2018 Jul 11.

Abstract

Identification of microorganisms by Fourier transform infrared (FT-IR) spectroscopy is known as a promising alternative to conventional identification techniques in clinical, food, and environmental microbiology. In this study we demonstrate the application of FT-IR hyperspectral imaging for rapid, objective, and cost-effective diagnosis of pathogenic bacteria. The proposed method involves a relatively short cultivation step under standardized conditions, transfer of the microbial material onto suitable IR windows by a replica method, FT-IR hyperspectral imaging measurements, and image segmentation by machine learning classifiers, a hierarchy of specifically optimized artificial neural networks (ANN). For cultivation, aliquots of the initial microbial cell suspension were diluted to guarantee single-colony growth on solid agar plates. After a short incubation period when microbial microcolonies achieved diameters between 50 and 300 μm, microcolony imprints were produced by using a specifically developed stamping device which allowed spatially accurate transfer of the microcolonies' upper cell layers onto IR-transparent CaF windows. Dry microcolony imprints were subsequently characterized using a mid-IR microspectroscopic imaging system equipped with a focal plane array (FPA) detector. Spectral data analysis involved preprocessing, quality tests, and the application of supervised modular ANN classifiers for hyperspectral image segmentation. The resulting easily interpretable segmentation maps suggest a taxonomic resolution below the species level.

摘要

傅里叶变换红外(FT-IR)光谱法通过微生物鉴定是一种有前途的替代传统鉴定技术在临床、食品和环境微生物学。在这项研究中,我们展示了傅里叶变换红外高光谱成像在快速、客观和具有成本效益的诊断中的应用。所提出的方法涉及相对较短的培养步骤在标准化条件下,通过复制方法将微生物材料转移到合适的 IR 窗口上,进行傅里叶变换红外高光谱成像测量,以及通过机器学习分类器进行图像分割,这是一个专门优化的人工神经网络(ANN)层次结构。为了培养,将初始微生物细胞悬浮液的等分试样稀释以保证在固体琼脂平板上的单菌落生长。在微生物微菌落直径达到 50 至 300μm 的短孵育期后,使用专门开发的冲压装置制作微菌落印痕,该装置允许微菌落的上层细胞层在空间上准确地转移到红外透明 CaF 窗口上。随后使用配备焦平面阵列(FPA)探测器的中红外微光谱成像系统对干燥的微菌落印痕进行特征描述。光谱数据分析涉及预处理、质量测试以及应用监督模块化 ANN 分类器进行高光谱图像分割。由此产生的易于解释的分割图表明在种以下水平具有分类分辨率。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验