Suppr超能文献

通过 GPR176、G 和 RGS16 限制时间的 G 蛋白信号通路控制视交叉上核主生物钟的节奏。

Time-Restricted G-Protein Signaling Pathways via GPR176, G, and RGS16 Set the Pace of the Master Circadian Clock in the Suprachiasmatic Nucleus.

机构信息

Department of Systems Biology, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyō-ku, Kyoto 606-8501, Japan.

出版信息

Int J Mol Sci. 2020 Jul 17;21(14):5055. doi: 10.3390/ijms21145055.

Abstract

G-protein-coupled receptors (GPCRs) are an important source of drug targets with diverse therapeutic applications. However, there are still more than one hundred orphan GPCRs, whose ligands and functions remain unidentified. The suprachiasmatic nucleus (SCN) is the central circadian clock of the brain, directing daily rhythms in activity-rest behavior and physiology. Malfunction of the circadian clock has been linked to a wide variety of diseases, including sleep-wake disorders, obesity, diabetes, cancer, and hypertension, making the circadian clock an intriguing target for drug development. The orphan receptor GPR176 is an SCN-enriched orphan GPCR that sets the pace of the circadian clock. GPR176 undergoes asparagine ()-linked glycosylation, a post-translational modification required for its proper cell-surface expression. Although its ligand remains unknown, this orphan receptor shows agonist-independent basal activity. GPR176 couples to the unique G-protein subclass G (or G) and participates in reducing cAMP production during the night. The regulator of G-protein signaling 16 (RGS16) is equally important for the regulation of circadian cAMP synthesis in the SCN. Genome-wide association studies, employing questionnaire-based evaluations of individual chronotypes, revealed loci near clock genes and in the regions containing and , a gene encoding an enzyme involved in protein -glycosylation. Therefore, increasing evidence suggests that -glycosylation of GPR176 and its downstream G-protein signal regulation may be involved in pathways characterizing human chronotypes. This review argues for the potential impact of focusing on GPCR signaling in the SCN for the purpose of fine-tuning the entire body clock.

摘要

G 蛋白偶联受体(GPCRs)是药物靶点的重要来源,具有广泛的治疗应用。然而,仍有 100 多个孤儿 GPCR 其配体和功能尚未确定。视交叉上核(SCN)是大脑的中央生物钟,指导日常活动-休息行为和生理学的节律。生物钟功能障碍与多种疾病有关,包括睡眠-觉醒障碍、肥胖、糖尿病、癌症和高血压,使生物钟成为药物开发的一个有趣目标。孤儿受体 GPR176 是一种富含 SCN 的孤儿 GPCR,它设定生物钟的节奏。GPR176 经历天冬酰胺(N)-连接糖基化,这是其正确的细胞表面表达所必需的翻译后修饰。尽管其配体仍然未知,但这种孤儿受体显示出激动剂独立的基础活性。GPR176 与独特的 G 蛋白亚类 G(或 G)偶联,并参与夜间减少 cAMP 的产生。G 蛋白信号调节因子 16(RGS16)对于 SCN 中昼夜节律 cAMP 合成的调节同样重要。全基因组关联研究,通过基于问卷的个体时型评估,揭示了时钟基因附近和包含 和 的区域中的基因位点,编码一种参与蛋白质糖基化的酶。因此,越来越多的证据表明,GPR176 的糖基化及其下游 G 蛋白信号调节可能参与了人类时型特征的途径。这篇综述认为,关注 SCN 中的 GPCR 信号可能会对微调整个生物钟产生潜在影响。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验