Suppr超能文献

多块分析在小型代谢组多组织数据集中的应用。

Application of Multiblock Analysis on Small Metabolomic Multi-Tissue Dataset.

作者信息

Torell Frida, Skotare Tomas, Trygg Johan

机构信息

Computational Life Science Cluster (CLiC), Department of Chemistry, Umeå University, 90187 Umeå, Sweden.

Corporate Research, Sartorius, 90187 Umeå, Sweden.

出版信息

Metabolites. 2020 Jul 17;10(7):295. doi: 10.3390/metabo10070295.

Abstract

Data integration has been proven to provide valuable information. The information extracted using data integration in the form of multiblock analysis can pinpoint both common and unique trends in the different blocks. When working with small multiblock datasets the number of possible integration methods is drastically reduced. To investigate the application of multiblock analysis in cases where one has a few number of samples and a lack of statistical power, we studied a small metabolomic multiblock dataset containing six blocks (i.e., tissue types), only including common metabolites. We used a single model multiblock analysis method called the joint and unique multiblock analysis (JUMBA) and compared it to a commonly used method, concatenated principal component analysis (PCA). These methods were used to detect trends in the dataset and identify underlying factors responsible for metabolic variations. Using JUMBA, we were able to interpret the extracted components and link them to relevant biological properties. JUMBA shows how the observations are related to one another, the stability of these relationships, and to what extent each of the blocks contribute to the components. These results indicate that multiblock methods can be useful even with a small number of samples.

摘要

数据整合已被证明能提供有价值的信息。以多块分析形式使用数据整合提取的信息可以查明不同块中的共同趋势和独特趋势。在处理小型多块数据集时,可能的整合方法数量会大幅减少。为了研究多块分析在样本数量较少且缺乏统计效力的情况下的应用,我们研究了一个小型代谢组学多块数据集,该数据集包含六个块(即组织类型),仅包括常见代谢物。我们使用了一种称为联合与独特多块分析(JUMBA)的单模型多块分析方法,并将其与常用方法串联主成分分析(PCA)进行比较。这些方法用于检测数据集中的趋势,并识别导致代谢变化的潜在因素。使用JUMBA,我们能够解释提取的成分并将它们与相关生物学特性联系起来。JUMBA展示了观测值之间的相互关系、这些关系的稳定性以及每个块对成分的贡献程度。这些结果表明,即使样本数量较少,多块方法也可能有用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9a85/7407932/ef2129b4d297/metabolites-10-00295-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验