Oulad Elhmaidi Zakaria, Abd-Lefdil Mohammed, El Khakani My Ali
Institut National de la Recherche Scientifique (INRS), Centre-Énergie, Matériaux et Télécommunications, 1650 Blvd. Lionel-Boulet, Varennes, QC J3X-1S2, Canada.
MANAPASE, Physics Department, Faculty of Sciences, Université Mohammed V, P.B.1014 Rabat, Morocco.
Nanomaterials (Basel). 2020 Jul 17;10(7):1393. doi: 10.3390/nano10071393.
We report on the achievement of novel photovoltaic devices based on the pulsed laser deposition (PLD) of p-type CuZnSnS (CZTS) layers onto n-type silicon nanowires (SiNWs). To optimize the photoconversion efficiency of these p-CZTS/n-SiNWs heterojunction devices, both the thickness of the CZTS films and the length of the SiNWs were independently varied in the (0.3-1.0 µm) and (1-6 µm) ranges, respectively. The kësterite CZTS films were directly deposited onto the SiNWs/Si substrates by means of a one-step PLD approach at a substrate temperature of 300 °C and without resorting to any post-sulfurization process. The systematic assessment of the PV performance of the ITO/p-CZTS/n-SiNWs/Al solar cells, as a function of both SiNWs' length and CZTS film thickness, has led to the identification of the optimal device characteristics. Indeed, an unprecedented power conversion efficiency (PCE) as high as ~5.5%, a V of 400 mV, a J of 26.3 mA/cm and a FF of 51.8% were delivered by the devices formed by SiNWs having a length of 2.2 µm along with a CZTS film thickness of 540 nm. This PCE value is higher than the current record efficiency (of 5.2%) reported for pulsed-laser-deposited-CZTS (PLD-CZTS)-based solar cells with the classical SLG/Mo/CZTS/CdS/ZnO/ITO/Ag/MgF device architecture. The relative ease of depositing high-quality CZTS films by means of PLD (without resorting to any post deposition treatment) along with the gain from an extended CZTS/Si interface offered by the silicon nanowires make the approach developed here very promising for further integration of CZTS with the mature silicon nanostructuring technologies to develop novel optoelectronic devices.
我们报道了基于将p型CuZnSnS(CZTS)层脉冲激光沉积(PLD)到n型硅纳米线(SiNWs)上而实现的新型光电器件。为了优化这些p-CZTS/n-SiNWs异质结器件的光电转换效率,分别在(0.3 - 1.0 µm)和(1 - 6 µm)范围内独立改变CZTS薄膜的厚度和SiNWs的长度。通过一步PLD方法,在300°C的衬底温度下,不进行任何后硫化处理,将硫锡铜矿CZTS薄膜直接沉积在SiNWs/Si衬底上。对ITO/p-CZTS/n-SiNWs/Al太阳能电池的光伏性能进行系统评估,作为SiNWs长度和CZTS薄膜厚度的函数,从而确定了最佳器件特性。实际上,由长度为2.2 µm的SiNWs和厚度为540 nm的CZTS薄膜形成的器件实现了高达约5.5%的前所未有的功率转换效率(PCE)、400 mV的V、26.3 mA/cm²的J和51.8%的填充因子(FF)。该PCE值高于具有经典SLG/Mo/CZTS/CdS/ZnO/ITO/Ag/MgF器件结构的基于脉冲激光沉积CZTS(PLD-CZTS)的太阳能电池所报道的当前记录效率(5.2%)。通过PLD沉积高质量CZTS薄膜的相对简便性(无需任何后沉积处理)以及硅纳米线提供的扩展CZTS/Si界面带来的增益,使得这里开发的方法对于进一步将CZTS与成熟的硅纳米结构技术集成以开发新型光电器件非常有前景。