Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States.
Institute of Biochemistry and Molecular Biology, University of Hamburg, Hamburg 20146, Germany.
J Am Chem Soc. 2020 Oct 28;142(43):18369-18377. doi: 10.1021/jacs.0c04675. Epub 2020 Oct 19.
Many microorganisms possess the capacity for producing multiple antibiotic secondary metabolites. In a few notable cases, combinations of secondary metabolites produced by the same organism are used in important combination therapies for treatment of drug-resistant bacterial infections. However, examples of conjoined roles of bioactive metabolites produced by the same organism remain uncommon. During our genetic functional analysis of oxidase-encoding genes in the everninomicin producer var. , we discovered previously uncharacterized antibiotics everninomicin N and O, comprised of an everninomicin fragment conjugated to the macrolide rosamicin via a rare nitrone moiety. These metabolites were determined to be hydrolysis products of everninomicin P, a nitrone-linked conjugate likely the result of nonenzymatic condensation of the rosamicin aldehyde and the octasaccharide everninomicin F, possessing a hydroxylamino sugar moiety. Rosamicin binds the erythromycin macrolide binding site approximately 60 Å from the orthosomycin binding site of everninomicins. However, while individual ribosomal binding sites for each functional half of everninomicin P are too distant for bidentate binding, ligand displacement studies demonstrated that everninomicin P competes with rosamicin for ribosomal binding. Chemical protection studies and structural analysis of everninomicin P revealed that everninomicin P occupies both the macrolide- and orthosomycin-binding sites on the 70S ribosome. Moreover, resistance mutations within each binding site were overcome by the inhibition of the opposite functional antibiotic moiety binding site. These data together demonstrate a strategy for coupling orthogonal antibiotic pharmacophores, a surprising tolerance for substantial covalent modification of each antibiotic, and a potential beneficial strategy to combat antibiotic resistance.
许多微生物都具有产生多种抗生素次级代谢物的能力。在少数几个显著的例子中,同一生物体产生的次级代谢物组合被用于治疗耐药性细菌感染的重要联合疗法。然而,同一生物体产生的生物活性代谢物的联合作用的例子仍然很少见。在对埃博霉素产生菌 var. 的氧化酶编码基因进行遗传功能分析的过程中,我们发现了以前未被描述的抗生素埃博霉素 N 和 O,它们由埃博霉素片段通过罕见的硝酮部分与大环内酯罗沙米星连接而成。这些代谢物被确定为埃博霉素 P 的水解产物,硝酮连接的共轭物可能是罗沙米星醛和八糖埃博霉素 F 的非酶缩合的结果,后者具有羟氨基糖部分。罗沙米星与埃博霉素的结合位点大约距离 orthosomycin 结合位点 60 Å。然而,虽然埃博霉素 P 的每个功能半部分的核糖体结合位点相隔太远,无法进行双齿结合,但配体置换研究表明,埃博霉素 P 与罗沙米星竞争核糖体结合。埃博霉素 P 的化学保护研究和结构分析表明,埃博霉素 P 占据了 70S 核糖体上的大环内酯和 orthosomycin 结合位点。此外,每个结合位点内的耐药突变都被相反功能抗生素部分结合位点的抑制所克服。这些数据共同证明了一种偶联正交抗生素药效团的策略,对每个抗生素进行实质性共价修饰的惊人耐受性,以及对抗生素耐药性的潜在有益策略。