Experimental Eye Research Institute, University Eye Hospital, Ruhr-University Bochum, In der Schornau 23-25, 44892, Bochum, Germany.
Graefes Arch Clin Exp Ophthalmol. 2020 Oct;258(10):2185-2203. doi: 10.1007/s00417-020-04854-x. Epub 2020 Jul 24.
Hypoxic damage to the retina is a relevant component of neurodegenerative pathologies such as glaucoma or retinal ischemia. In porcine retina organ cultures, hypoxic damage can be induced by applying cobalt chloride (CoCl). The aim of our study was to investigate possible neuroprotective effects of the extremolytes ectoine and hydroxyectoine in this hypoxia-damaged retina model.
To simulate hypoxia, porcine retina organ cultures were damaged with 300 μM CoCl for 48 h starting on day 1 (n = 8-9/group). In order to investigate the possible neuroprotective effects of ectoine and hydroxyectoine, 0.5 mM of each extremolyte was added to the culture at the same time as the stressor and for the same duration. On day 8, the retina organ cultures were taken for (immuno)-histochemical examinations. Retinal ganglion cells (RGCs), macroglia, and apoptotic and hypoxic cells were detected with appropriate markers followed by cell counts and group comparisons.
Treatment with ectoine resulted in RGC protection (p < 0.05) and reduced rate of apoptosis (p < 0.001) in hypoxia-treated retina organ cultures. However, the macroglia area and the amount of hypoxic, HIF-1α cells were unaffected by the ectoine treatment (p = 0.99). Treatment with hydroxyectoine also protected RGCs (p < 0.01) by inhibiting apoptosis (p < 0.001). In addition, the number of hypoxic, HIF-1α cells could be significantly reduced by treatment with hydroxyectoine (p < 0.05). The macroglia area on the other hand was unchanged after CoCl and treatment with hydroxyectoine.
Both extremolytes had a protective effect on CoCl-induced hypoxia in the porcine retina organ culture. Regarding the reduction of hypoxic stress, hydroxyectoine appears to be more effective. Thus, both extremolytes represent an interesting potential new therapeutic approach for patients with ocular diseases in which hypoxic processes play a significant role.
视网膜缺氧损伤是神经退行性病变(如青光眼或视网膜缺血)的一个相关组成部分。在猪视网膜器官培养物中,可通过施加氯化钴(CoCl)来诱导缺氧损伤。本研究的目的是在这种缺氧损伤的视网膜模型中研究极端溶质海藻糖和 4-羟基海藻糖的可能神经保护作用。
为了模拟缺氧,在第 1 天(n=8-9/组)开始用 300 μM CoCl 损伤猪视网膜器官培养物 48 小时。为了研究海藻糖和 4-羟基海藻糖的可能神经保护作用,在应激源同时和相同时间内向培养物中添加 0.5 mM 每种极端溶质。在第 8 天,取出视网膜器官培养物进行(免疫)组织化学检查。用适当的标志物检测视网膜神经节细胞(RGC)、大胶质细胞以及凋亡和缺氧细胞,然后进行细胞计数和组间比较。
用海藻糖处理可导致 RGC 受到保护(p<0.05),并减少缺氧处理的视网膜器官培养物中的细胞凋亡率(p<0.001)。然而,海藻糖处理对大胶质细胞面积和缺氧、HIF-1α 细胞的数量没有影响(p=0.99)。用 4-羟基海藻糖处理也可通过抑制凋亡(p<0.001)来保护 RGC(p<0.01)。此外,用 4-羟基海藻糖处理可显著减少缺氧、HIF-1α 细胞的数量(p<0.05)。另一方面,用 CoCl 和 4-羟基海藻糖处理后,大胶质细胞面积保持不变。
两种极端溶质对猪视网膜器官培养物中的 CoCl 诱导缺氧均具有保护作用。就减轻缺氧应激而言,4-羟基海藻糖似乎更有效。因此,两种极端溶质均代表了一种有前途的新的治疗方法,适用于缺氧过程起重要作用的眼部疾病患者。