Departament of Neurosurgery, Hospital de Alta Complejidad El Cruce, Buenos Aires, Argentina.
Departament of Neurosurgery, Hospital de Alta Complejidad El Cruce, Buenos Aires, Argentina; Laboratorio Programa de Trasplante de Órganos y Tejidos, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, Argentina.
World Neurosurg. 2020 Nov;143:11-16. doi: 10.1016/j.wneu.2020.07.116. Epub 2020 Jul 23.
Simulation allows surgical trainees to acquire surgical skills in a safe environment. With the aim of reducing the use of animal experimentation, different alternative nonliving models have been pursued. However, one of the main disadvantages of these nonliving models has been the absence of arterial flow, pulsation, and the ability to integrate both during a procedure on a blood vessel. In the present report, we have introduced a microvascular surgery simulation training model that uses a fiscally responsible and replicable pulsatile flow system.
We connected 30 human placentas to a pulsatile flow system and used them to simulate aneurysm clipping and vascular anastomosis.
The presence of the pulsatile flow system allowed for the simulation of a hydrodynamic mechanism similar to that found in real life. In the aneurysm simulation, the arterial flow could be evaluated before and after clipping the aneurysm using a Doppler ultrasound system. When practicing anastomosis, the use of the pulsatile flow system allowed us to assess the vascular flow through the anastomosis, with verification using the Doppler ultrasound system. Leaks were manifested as "blood" pulsatile ejections and were more frequent at the beginning of the surgical practice, showing a learning curve.
We have provided a step-by-step guide for the assembly of a replicable and inexpensive pulsatile flow system and its use in placentas for the simulation of, and training in, performing different types of anastomoses and intracranial aneurysms surgery.
模拟可以让外科学员在安全的环境中获得外科技能。为了减少动物实验的使用,已经开发了不同的非活体替代模型。然而,这些非活体模型的一个主要缺点是缺乏动脉血流、搏动以及在血管上进行手术时整合两者的能力。在本报告中,我们引入了一种使用具有财政责任感和可复制搏动流系统的微血管手术模拟训练模型。
我们将 30 个人胎盘连接到搏动流系统上,并使用它们模拟动脉瘤夹闭和血管吻合术。
搏动流系统的存在允许模拟类似于真实生活中的流体动力学机制。在动脉瘤模拟中,可以使用多普勒超声系统在夹闭动脉瘤前后评估动脉血流。在进行吻合术时,使用搏动流系统可以评估通过吻合术的血管血流,并使用多普勒超声系统进行验证。泄漏表现为“血液”搏动性喷射,在手术练习的开始时更为频繁,显示出学习曲线。
我们提供了一个可重复且经济实惠的搏动流系统的组装步骤指南,以及在胎盘上模拟和培训不同类型的吻合术和颅内动脉瘤手术的使用方法。