Yu Leilei, Duan Hui, Kellingray Lee, Cen Shi, Tian Fengwei, Zhao Jianxin, Zhang Hao, Gall Gwénaëlle Le, Mayer Melinda J, Zhai Qixiao, Chen Wei, Narbad Arjan
State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China.
School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China.
Probiotics Antimicrob Proteins. 2021 Apr;13(2):398-412. doi: 10.1007/s12602-020-09677-0.
The gut microbiota has been identified as a target of toxic metals and a potentially crucial mediator of the bioavailability and toxicity of these metals. In this study, we show that aluminum (Al) exposure, even at low dose, affected the growth of representative strains from the human intestine via pure culture experiments. In vitro, Lactobacillus plantarum CCFM639 could bind Al on its cell surface as shown by electron microscopy and energy dispersive X-ray analysis. The potential of L. plantarum CCFM639 to reverse changes in human intestine microbiota induced by low-dose dietary Al exposure was investigated using an in vitro colonic fermentation model. Batch fermenters were inoculated with fresh stool samples from healthy adult donors and supplemented with 86 mg/L Al and/or 10 CFU of L. plantarum CCFM639. Al exposure significantly increased the relative abundances of Bacteroidetes (Prevotella), Proteobacteria (Escherichia), Actinobacteria (Collinsella), Euryarchaeota (Methanobrevibacter), and Verrucomicrobiaceae and decreased Firmicutes (Streptococcus, Roseburia, Ruminococcus, Dialister, Coprobacillus). Some changes were reversed by the inclusion of L. plantarum CCFM639. Alterations in gut microbiota induced by Al and L. plantarum CCFM639 inevitably led to changes in metabolite levels. The short-chain fatty acid (SCFAs) contents were reduced after Al exposure, but L. plantarum CCFM639 could elevate their levels. SCFAs had positive correlations with beneficial bacteria, such as Dialister, Streptococcus, Roseburia, and negative correlations with Erwinia, Escherichia, and Serratia. Therefore, dietary Al exposure altered the composition and structure of the human gut microbiota, and this was partially mitigated by L. plantarum CCFM639. This probiotic supplementation is potentially a promising and safe approach to alleviate the harmful effects of dietary Al exposure.
肠道微生物群已被确定为有毒金属的作用靶点,以及这些金属生物利用度和毒性的潜在关键介质。在本研究中,我们通过纯培养实验表明,即使低剂量暴露于铝(Al)也会影响来自人类肠道的代表性菌株的生长。在体外,通过电子显微镜和能量色散X射线分析表明,植物乳杆菌CCFM639可以在其细胞表面结合铝。使用体外结肠发酵模型研究了植物乳杆菌CCFM639逆转低剂量膳食铝暴露诱导的人类肠道微生物群变化的潜力。分批发酵罐接种来自健康成年供体的新鲜粪便样本,并补充86 mg/L铝和/或10 CFU植物乳杆菌CCFM639。铝暴露显著增加了拟杆菌门(普雷沃氏菌属)、变形菌门(大肠杆菌属)、放线菌门(柯林斯菌属)、广古菌门(甲烷短杆菌属)和疣微菌科的相对丰度,并降低了厚壁菌门(链球菌属、罗斯氏菌属、瘤胃球菌属、戴氏菌属、粪芽孢杆菌属)的相对丰度。包含植物乳杆菌CCFM639可逆转其中一些变化。铝和植物乳杆菌CCFM639诱导的肠道微生物群改变不可避免地导致代谢物水平的变化。铝暴露后短链脂肪酸(SCFAs)含量降低,但植物乳杆菌CCFM639可提高其水平。SCFAs与有益细菌如戴氏菌属、链球菌属、罗斯氏菌属呈正相关,与欧文氏菌属、大肠杆菌属和沙雷氏菌属呈负相关。因此,膳食铝暴露改变了人类肠道微生物群的组成和结构,而植物乳杆菌CCFM639可部分缓解这种情况。这种益生菌补充可能是一种有前景且安全的方法,可减轻膳食铝暴露的有害影响。