Castañeda-Monsalve Victor, Fröhlich Laura-Fabienne, Haange Sven-Bastiaan, Homsi Masun Nabhan, Rolle-Kampczyk Ulrike, Fu Qiuguo, von Bergen Martin, Jehmlich Nico
Department of Molecular Toxicology, Helmholtz Centre for Environmental Research GmbH (UFZ), Leipzig, Germany.
Department of Analytical Chemistry, Helmholtz Centre for Environmental Research GmbH (UFZ), Leipzig, Germany.
Front Microbiol. 2024 Feb 20;15:1349367. doi: 10.3389/fmicb.2024.1349367. eCollection 2024.
The human gut microbiota is a complex microbial community with critical functions for the host, including the transformation of various chemicals. While effects on microorganisms has been evaluated using single-species models, their functional effects within more complex microbial communities remain unclear. In this study, we investigated the response of a simplified human gut microbiota model (SIHUMIx) cultivated in an bioreactor system in combination with 96 deep-well plates after exposure to 90 different xenobiotics, comprising 54 plant protection products and 36 food additives and dyes, at environmentally relevant concentrations. We employed metaproteomics and metabolomics to evaluate changes in bacterial abundances, the production of Short Chain Fatty Acids (SCFAs), and the regulation of metabolic pathways. Our findings unveiled significant changes induced by 23 out of 54 plant protection products and 28 out of 36 food additives across all three categories assessed. Notable highlights include azoxystrobin, fluroxypyr, and ethoxyquin causing a substantial reduction (logFC < -0.5) in the concentrations of the primary SCFAs: acetate, butyrate, and propionate. Several food additives had significant effects on the relative abundances of bacterial species; for example, acid orange 7 and saccharin led to a 75% decrease in , with saccharin causing an additional 2.5-fold increase in compared to the control. Furthermore, both groups exhibited up- and down-regulation of various pathways, including those related to the metabolism of amino acids such as histidine, valine, leucine, and isoleucine, as well as bacterial secretion systems and energy pathways like starch, sucrose, butanoate, and pyruvate metabolism. This research introduces an efficient technique that enables high-throughput screening of the structure and function of a simplified and well-defined human gut microbiota model against 90 chemicals using metaproteomics and metabolomics. We believe this approach will be instrumental in characterizing chemical-microbiota interactions especially important for regulatory chemical risk assessments.
人类肠道微生物群是一个对宿主具有关键功能的复杂微生物群落,包括各种化学物质的转化。虽然已经使用单物种模型评估了对微生物的影响,但它们在更复杂的微生物群落中的功能作用仍不清楚。在本研究中,我们调查了在生物反应器系统中与96孔深孔板组合培养的简化人类肠道微生物群模型(SIHUMIx)在暴露于90种不同的外源化合物后产生的反应,这些外源化合物包括54种植物保护产品以及36种食品添加剂和染料,浓度为环境相关浓度。我们采用元蛋白质组学和代谢组学来评估细菌丰度的变化、短链脂肪酸(SCFAs)的产生以及代谢途径的调节。我们的研究结果揭示了在评估的所有三个类别中,54种植物保护产品中的23种以及36种食品添加剂中的28种引起了显著变化。值得注意的亮点包括嘧菌酯、氟草烟和乙氧喹啉导致主要短链脂肪酸(乙酸盐、丁酸盐和丙酸盐)浓度大幅降低(logFC < -0.5)。几种食品添加剂对细菌物种的相对丰度有显著影响;例如,酸性橙7和糖精导致[具体细菌名称]减少75%,与对照相比,糖精使[另一具体细菌名称]增加2.5倍。此外,两组都表现出各种途径的上调和下调,包括与组氨酸、缬氨酸、亮氨酸和异亮氨酸等氨基酸代谢相关的途径,以及细菌分泌系统和淀粉、蔗糖、丁酸盐和丙酮酸代谢等能量途径。本研究引入了一种高效技术,该技术能够使用元蛋白质组学和代谢组学对简化且定义明确的人类肠道微生物群模型针对90种化学物质的结构和功能进行高通量筛选。我们相信这种方法将有助于表征化学物质与微生物群的相互作用,这对于监管化学风险评估尤为重要。