Department of Orthopedic Surgery, Cleveland Clinic, Cleveland, OH, USA; Machine Learning Arthroplasty Lab, Cleveland Clinic, Cleveland, OH, USA.
Machine Learning Arthroplasty Lab, Cleveland Clinic, Cleveland, OH, USA; Sports & Shoulder Service, Hospital for Special Surgery, New York, NY, USA.
J Shoulder Elbow Surg. 2020 Nov;29(11):2385-2394. doi: 10.1016/j.jse.2020.04.009. Epub 2020 Jun 9.
HYPOTHESIS/PURPOSE: The objective is to develop and validate an artificial intelligence model, specifically an artificial neural network (ANN), to predict length of stay (LOS), discharge disposition, and inpatient charges for primary anatomic total (aTSA), reverse total (rTSA), and hemi- (HSA) shoulder arthroplasty to establish internal validity in predicting patient-specific value metrics.
Using data from the National Inpatient Sample between 2003 and 2014, 4 different ANN models to predict LOS, discharge disposition, and inpatient costs using 39 preoperative variables were developed based on diagnosis and arthroplasty type: primary chronic/degenerative aTSA, primary chronic/degenerative rTSA, primary traumatic/acute rTSA, and primary acute/traumatic HSA. Models were also combined into diagnosis type only. Outcome metrics included accuracy and area under the curve (AUC) for a receiver operating characteristic curve.
A total of 111,147 patients undergoing primary shoulder replacement were included. The machine learning algorithm predicting the overall chronic/degenerative conditions model (aTSA, rTSA) achieved accuracies of 76.5%, 91.8%, and 73.1% for total cost, LOS, and disposition, respectively; AUCs were 0.75, 0.89, and 0.77 for total cost, LOS, and disposition, respectively. The overall acute/traumatic conditions model (rTSA, HSA) had accuracies of 70.3%, 79.1%, and 72.0% and AUCs of 0.72, 0.78, and 0.79 for total cost, LOS, and discharge disposition, respectively.
Our ANN demonstrated fair to good accuracy and reliability for predicting inpatient cost, LOS, and discharge disposition in shoulder arthroplasty for both chronic/degenerative and acute/traumatic conditions. Machine learning has the potential to preoperatively predict costs, LOS, and disposition using patient-specific data for expectation management between health care providers, patients, and payers.
假设/目的:目的是开发和验证一种人工智能模型,特别是人工神经网络(ANN),以预测原发性解剖全肩关节置换术(aTSA)、反式全肩关节置换术(rTSA)和半肩关节置换术(HSA)的住院时间(LOS)、出院处置和住院费用,以在预测患者特定价值指标方面建立内部有效性。
使用 2003 年至 2014 年期间国家住院患者样本中的数据,根据诊断和关节置换类型,使用 39 个术前变量,为原发性慢性/退行性 aTSA、原发性慢性/退行性 rTSA、原发性创伤/急性 rTSA 和原发性急性/创伤性 HSA 开发了 4 种不同的 ANN 模型,以预测 LOS、出院处置和住院费用。模型也可以仅按诊断类型组合。结果指标包括接收者操作特征曲线的准确性和曲线下面积(AUC)。
共纳入 111147 例初次行肩部置换术的患者。用于预测总体慢性/退行性疾病模型(aTSA、rTSA)的机器学习算法在总费用、LOS 和处置方面的准确率分别为 76.5%、91.8%和 73.1%;AUC 分别为 0.75、0.89 和 0.77。用于总体急性/创伤性疾病模型(rTSA、HSA)的准确率分别为 70.3%、79.1%和 72.0%,AUC 分别为 0.72、0.78 和 0.79。
我们的 ANN 在预测慢性/退行性和急性/创伤性肩部置换术的住院费用、LOS 和出院处置方面具有良好的准确性和可靠性。机器学习有可能使用患者特定数据在术前预测成本、LOS 和处置,以便在医疗保健提供者、患者和支付方之间进行期望管理。