Suppr超能文献

一种用于可逆压缩准固态超级电容器的高弹性且抗疲劳的天然蛋白质增强水凝胶电解质。

A Highly Elastic and Fatigue-Resistant Natural Protein-Reinforced Hydrogel Electrolyte for Reversible-Compressible Quasi-Solid-State Supercapacitors.

作者信息

Nan Jingya, Zhang Gaitong, Zhu Tianyu, Wang Zhongkai, Wang Lijun, Wang Hongsheng, Chu Fuxiang, Wang Chunpeng, Tang Chuanbing

机构信息

Institute of Chemical Industry of Forest Products Chinese Academy of Forestry Key Laboratory of Biomass Energy and Material, Jiangsu Province Nanjing Jiangsu 210042 China.

Department of Chemistry and Biochemistry University of South Carolina Columbia SC 29208 USA.

出版信息

Adv Sci (Weinh). 2020 Jun 5;7(14):2000587. doi: 10.1002/advs.202000587. eCollection 2020 Jul.

Abstract

Compressible solid-state supercapacitors are emerging as promising power sources for next-generation flexible electronics with enhanced safety and mechanical integrity. Highly elastic and compressible solid electrolytes are in great demand to achieve reversible compressibility and excellent capacitive stability of these supercapacitor devices. Here, a lithium ion-conducting hydrogel electrolyte by integrating natural protein nanoparticles into polyacrylamide network is reported. Due to the synergistic effect of natural protein nanoparticles and polyacrylamide chains, the obtained hydrogel shows remarkable elasticity, high compressibility, and fatigue resistance properties. More significantly, the supercapacitor device based on this hydrogel electrolyte exhibits reversible compressibility under multiple cyclic compressions, working well under 80% strain for 1000 compression cycles without sacrificing its capacitive performance. This work offers a promising approach for compressible supercapacitors.

摘要

可压缩固态超级电容器正成为下一代柔性电子产品中颇具前景的电源,具有更高的安全性和机械完整性。为实现这些超级电容器器件的可逆压缩性和出色的电容稳定性,对高弹性和可压缩的固体电解质有巨大需求。在此,报道了一种通过将天然蛋白质纳米颗粒整合到聚丙烯酰胺网络中制备的锂离子导电水凝胶电解质。由于天然蛋白质纳米颗粒和聚丙烯酰胺链的协同效应,所得水凝胶表现出显著的弹性、高压缩性和抗疲劳性能。更重要的是,基于这种水凝胶电解质的超级电容器器件在多次循环压缩下表现出可逆压缩性,在80%应变下工作1000次压缩循环仍能保持其电容性能而不降低。这项工作为可压缩超级电容器提供了一种很有前景的方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/390d/7375230/436c17f350d4/ADVS-7-2000587-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验