Suppr超能文献

通过氧化化学气相沉积制备导电且高拉伸的压阻聚合物纳米复合材料。

Electrically Conductive and Highly Stretchable Piezoresistive Polymer Nanocomposites via Oxidative Chemical Vapor Deposition.

机构信息

Chemical Product Engineering, Engineering and Technology Institute Groningen (ENTEG), University of Groningen, Nijenborgh 4, Groningen 9747 AG, The Netherlands.

Polymer Science, Zernike Institute for Advanced Materials (ZIAM), University of Groningen, Nijenborgh 4, Groningen 9747 AG, The Netherlands.

出版信息

ACS Appl Mater Interfaces. 2023 Jul 5;15(26):31899-31916. doi: 10.1021/acsami.3c06015. Epub 2023 Jun 22.

Abstract

Electrically conductive polymer nanocomposites have been the subject of intense research due to their promising potential as piezoresistive biomedical sensors, leveraging their flexibility and biocompatibility. Although intrinsically conductive polymers such as polypyrrole (PPy) and polyaniline have emerged as lucrative candidates, they are extremely limited in their processability by conventional solution-based approaches. In this work, ultrathin nanostructured coatings of doped PPy are realized on polyurethane films of different architectures via oxidative chemical vapor deposition to develop stretchable and flexible resistance-based strain sensors. Holding the substrates perpendicular to the reactant flows facilitates diffusive transport and ensures excellent conformality of the interfacial integrated PPy coatings throughout the 3D porous electrospun fiber mats in a single step. This allows the mechanically robust (stretchability > 400%, with fatigue resistance up to 1000 cycles) nanocomposites to elicit a reversible change of electrical resistance when subjected to consecutive cycles of stretching and releasing. The repeatable performance of the strain sensor is linear due to dimensional changes of the conductive network in the low-strain regime (ε ≤ 50%), while the evolution of nano-cracks leads to an exponential increase, which is observed in the high-strain regime, recording a gauge factor as high as 46 at 202% elongational strain. The stretchable conductive polymer nanocomposites also show biocompatibility toward human dermal fibroblasts, thus providing a promising path for use as piezoresistive strain sensors and finding applications in biomedical applications such as wearable, skin-mountable flexible electronics.

摘要

导电聚合物纳米复合材料因其作为压阻式生物医学传感器的潜在应用而受到广泛关注,这得益于其灵活性和生物相容性。尽管本征导电聚合物,如聚吡咯(PPy)和聚苯胺,已成为有前途的候选材料,但它们在传统的基于溶液的方法中的可加工性极其有限。在这项工作中,通过氧化化学气相沉积在不同结构的聚氨酯薄膜上实现了掺杂 PPy 的超薄纳米结构涂层,以开发可拉伸和灵活的基于电阻的应变传感器。将基底垂直于反应物流放置有助于扩散传输,并确保界面集成的 PPy 涂层在整个 3D 多孔静电纺丝纤维垫中具有极好的一致性,这一过程在单个步骤中完成。这使得机械坚固(可拉伸性>400%,疲劳抵抗性高达 1000 次循环)的纳米复合材料在经受连续的拉伸和释放循环时能够引起电阻的可逆变化。应变传感器的重复性性能是线性的,因为在低应变区(ε≤50%)导电网络的尺寸变化,而纳米裂纹的演变导致指数增加,这在高应变区观察到,记录的应变系数高达 46 在 202%的伸长应变下。这种可拉伸的导电聚合物纳米复合材料对人真皮成纤维细胞也具有生物相容性,因此为作为压阻式应变传感器的应用提供了有前途的途径,并在可穿戴、可贴附皮肤的柔性电子等生物医学应用中找到了应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b809/10326852/8c140d8417cf/am3c06015_0002.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验