Zhang Xuan, Zhang Lishu, Liu Meilin, Chng Chin Boon, Ler Eddy Pang Yi, Zhou Jinrun, Matsuhisa Naoji, Tan Yu Jun
Department of Mechanical Engineering, College of Design and Engineering, National University of Singapore, Singapore 117575, Singapore.
Peter Grünberg Institut and Institute for Advanced Simulation, Forschungszentrum Jülich, 52425 Jülich, Germany.
Sci Adv. 2025 Jan 3;11(1):eadq7441. doi: 10.1126/sciadv.adq7441. Epub 2025 Jan 1.
Magneto-responsiveness in living organisms, exemplified by migratory birds navigating vast distances, offers inspiration for soft robots and human-computer interfaces. However, achieving both high magneto-responsiveness and resilient mechanical properties in synthetic materials has been challenging. Here, we develop magneto-iono-elastomers (MINEs), combining exceptional magnetization [2.6 emu (electromagnetic units)/g] with hyperelasticity and self-healability. Such a MINE consists of a magnetic ionic liquid (MIL; [Emim][FeCl]) and a urethane group-based polymer that can distinctively confine magnetic anions through strong intermolecular interactions, including potential hydrogen bonds and metal-coordination bonds. This confinement enables high MIL loading (80 wt %) while maintaining structure integrity, resulting in a high ionic conductivity exceeding 10 S/cm. Furthermore, the synergistic interplay of these reversible bonds in MINEs contributes to an outstanding elastic recovery that surpasses 99%, alongside good self-healing capabilities. The unique combination of these attributes positions MINE as a promising candidate for diverse magnetoelectronic applications, encompassing wearable strain sensors, contactless magneto-responsive electronics, see-through touch panels, and soft magnetic carriers.
生物体中的磁响应性,以长途迁徙的候鸟为例,为软机器人和人机界面提供了灵感。然而,在合成材料中同时实现高磁响应性和弹性机械性能一直具有挑战性。在此,我们开发了磁离子弹性体(MINEs),它兼具出色的磁化强度[2.6电磁单位(emu)/克]以及超弹性和自修复性。这种MINE由磁性离子液体(MIL;[Emim][FeCl])和基于聚氨酯基团的聚合物组成,该聚合物能够通过包括潜在氢键和金属配位键在内的强分子间相互作用显著限制磁性阴离子。这种限制使得能够实现高MIL负载量(80重量%),同时保持结构完整性,从而产生超过10 S/cm的高离子电导率。此外,MINEs中这些可逆键的协同相互作用有助于实现超过99%的出色弹性恢复,以及良好的自修复能力。这些特性的独特组合使MINE成为各种磁电子应用的有前途的候选材料,包括可穿戴应变传感器、非接触式磁响应电子设备、透明触摸面板和软磁载体。