Suppr超能文献

基于多重插补的针对非随机缺失数据的敏感性分析方法。

A multiple imputation-based sensitivity analysis approach for data subject to missing not at random.

机构信息

Department of Epidemiology and Biostatistics, College of Public Health, University of Arizona, Tucson, Arizona, USA.

National Center for Health Statistics, Centers for Disease Control and Prevention, Hyattsville, Maryland, USA.

出版信息

Stat Med. 2020 Nov 20;39(26):3756-3771. doi: 10.1002/sim.8691. Epub 2020 Jul 27.

Abstract

Missingness mechanism is in theory unverifiable based only on observed data. If there is a suspicion of missing not at random, researchers often perform a sensitivity analysis to evaluate the impact of various missingness mechanisms. In general, sensitivity analysis approaches require a full specification of the relationship between missing values and missingness probabilities. Such relationship can be specified based on a selection model, a pattern-mixture model or a shared parameter model. Under the selection modeling framework, we propose a sensitivity analysis approach using a nonparametric multiple imputation strategy. The proposed approach only requires specifying the correlation coefficient between missing values and selection (response) probabilities under a selection model. The correlation coefficient is a standardized measure and can be used as a natural sensitivity analysis parameter. The sensitivity analysis involves multiple imputations of missing values, yet the sensitivity parameter is only used to select imputing/donor sets. Hence, the proposed approach might be more robust against misspecifications of the sensitivity parameter. For illustration, the proposed approach is applied to incomplete measurements of level of preoperative Hemoglobin A1c, for patients who had high-grade carotid artery stenosisa and were scheduled for surgery. A simulation study is conducted to evaluate the performance of the proposed approach.

摘要

仅基于观察数据,缺失机制在理论上是无法验证的。如果怀疑存在非随机缺失,研究人员通常会进行敏感性分析,以评估各种缺失机制的影响。一般来说,敏感性分析方法需要充分说明缺失值与缺失概率之间的关系。这种关系可以基于选择模型、混合模式模型或共享参数模型来指定。在选择建模框架下,我们提出了一种使用非参数多重插补策略的敏感性分析方法。该方法仅需要在选择模型下指定缺失值与选择(响应)概率之间的相关系数。相关系数是一个标准化的度量指标,可以用作自然的敏感性分析参数。敏感性分析涉及缺失值的多次插补,但敏感性参数仅用于选择插补/捐赠集。因此,与敏感性参数的错误指定相比,该方法可能更稳健。为了说明问题,我们将该方法应用于术前血红蛋白 A1c 水平的不完全测量,这些患者患有高级颈动脉狭窄症,且计划进行手术。进行了一项模拟研究,以评估所提出方法的性能。

相似文献

1
A multiple imputation-based sensitivity analysis approach for data subject to missing not at random.
Stat Med. 2020 Nov 20;39(26):3756-3771. doi: 10.1002/sim.8691. Epub 2020 Jul 27.
3
A nonparametric multiple imputation approach for missing categorical data.
BMC Med Res Methodol. 2017 Jun 6;17(1):87. doi: 10.1186/s12874-017-0360-2.
4
Accounting for not-at-random missingness through imputation stacking.
Stat Med. 2021 Nov 30;40(27):6118-6132. doi: 10.1002/sim.9174. Epub 2021 Aug 29.
5
Outcome-sensitive multiple imputation: a simulation study.
BMC Med Res Methodol. 2017 Jan 9;17(1):2. doi: 10.1186/s12874-016-0281-5.
6
Multiple imputation for handling missing outcome data when estimating the relative risk.
BMC Med Res Methodol. 2017 Sep 6;17(1):134. doi: 10.1186/s12874-017-0414-5.
8
Multiple imputation with missing data indicators.
Stat Methods Med Res. 2021 Dec;30(12):2685-2700. doi: 10.1177/09622802211047346. Epub 2021 Oct 13.
9
Evaluation of a weighting approach for performing sensitivity analysis after multiple imputation.
BMC Med Res Methodol. 2015 Oct 13;15:83. doi: 10.1186/s12874-015-0074-2.
10
Comparison of methods for handling covariate missingness in propensity score estimation with a binary exposure.
BMC Med Res Methodol. 2020 Jun 26;20(1):168. doi: 10.1186/s12874-020-01053-4.

本文引用的文献

1
A robust imputation method for missing responses and covariates in sample selection models.
Stat Methods Med Res. 2019 Jan;28(1):102-116. doi: 10.1177/0962280217715663. Epub 2017 Jul 5.
2
A multiple imputation approach for MNAR mechanisms compatible with Heckman's model.
Stat Med. 2016 Jul 30;35(17):2907-20. doi: 10.1002/sim.6902. Epub 2016 Feb 18.
3
Doubly robust multiple imputation using kernel-based techniques.
Biom J. 2016 May;58(3):588-606. doi: 10.1002/bimj.201400256. Epub 2015 Dec 9.
4
Sensitivity analysis for a partially missing binary outcome in a two-arm randomized clinical trial.
Stat Med. 2014 Oct 30;33(24):4170-85. doi: 10.1002/sim.6197. Epub 2014 May 20.
6
Prospective neurocognitive evaluation of patients undergoing carotid interventions.
J Vasc Surg. 2012 Dec;56(6):1571-8. doi: 10.1016/j.jvs.2012.05.092. Epub 2012 Aug 11.
8
Missing data handling methods in medical device clinical trials.
J Biopharm Stat. 2009 Nov;19(6):1085-98. doi: 10.1080/10543400903243009.
9
Multiple imputation using an iterative hot-deck with distance-based donor selection.
Stat Med. 2008 Jan 15;27(1):83-102. doi: 10.1002/sim.3001.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验