Department of Statistical Sciences, University of Cape Town, Cape Town, Rondebosch7701, South Africa.
BMC Med Res Methodol. 2019 Jan 9;19(1):10. doi: 10.1186/s12874-018-0639-y.
The benefit of a given treatment can be evaluated via a randomized clinical trial design. However, protocol deviations may severely compromise treatment effect since such deviations often lead to missing values. The assumption that methods of analysis can account for the missing data cannot be justified and hence methods of analysis based on plausible assumptions should be used. An alternative analysis to the simple imputation methods requires unverifiable assumptions about the missing data. Therefore sensitivity analysis should be performed to investigate the robustness of statistical inferences to alternative assumptions about the missing data.
In this paper, we investigate the effect of tuberculosis pericarditis treatment (prednisolone) on CD4 count changes over time and draw inferences in the presence of missing data. The data come from a multicentre clinical trial (the IMPI trial).
We investigate the effect of prednisolone on CD4 count changes by adjusting for baseline and time-dependent covariates in the fitted model. To draw inferences in the presence of missing data, we investigate sensitivity of statistical inferences to missing data assumptions using the pattern-mixture model with multiple imputation (PM-MI) approach. We also performed simulation experiment to evaluate the performance of the imputation approaches.
Our results showed that the prednisolone treatment has no significant effect on CD4 count changes over time and that the prednisolone treatment does not interact with time and anti-retroviral therapy (ART). Also, patients' CD4 count levels significantly increase over the study period and patients on ART treatment have higher CD4 count levels compared with those not on ART. The results also showed that older patients had lower CD4 count levels compared with younger patients, and parameter estimates under the MAR assumption are robust to NMAR assumptions.
Since the parameter estimates under the MAR analysis are robust to NMAR analyses, the process that generated the missing data in the CD4 count measurements is missing at random (MAR). The implication is that valid inferences can be obtained using either the likelihood-based methods or multiple imputation approaches.
可以通过随机临床试验设计来评估特定治疗的效果。然而,方案偏差可能会严重影响治疗效果,因为这些偏差通常会导致缺失值。分析方法可以解释缺失数据的假设不能成立,因此应该使用基于合理假设的分析方法。替代简单插补方法的分析需要对缺失数据进行不可验证的假设。因此,应该进行敏感性分析,以调查替代缺失数据假设对统计推断的稳健性。
在本文中,我们研究了结核性心包炎治疗(泼尼松龙)对 CD4 计数随时间变化的影响,并在缺失数据的情况下进行了推断。这些数据来自一项多中心临床试验(IMPI 试验)。
我们通过在拟合模型中调整基线和时间相关协变量来研究泼尼松龙对 CD4 计数变化的影响。为了在缺失数据的情况下进行推断,我们使用具有多次插补的模式混合模型(PM-MI)方法来研究统计推断对缺失数据假设的敏感性。我们还进行了模拟实验来评估插补方法的性能。
我们的结果表明,泼尼松龙治疗对 CD4 计数随时间的变化没有显著影响,泼尼松龙治疗与时间和抗逆转录病毒治疗(ART)没有相互作用。此外,患者的 CD4 计数水平在研究期间显著增加,接受 ART 治疗的患者的 CD4 计数水平高于未接受 ART 治疗的患者。结果还表明,年龄较大的患者的 CD4 计数水平低于年龄较小的患者,并且 MAR 假设下的参数估计对 NMAR 假设具有稳健性。
由于 MAR 分析下的参数估计对 NMAR 分析具有稳健性,因此生成 CD4 计数测量中缺失数据的过程是随机缺失(MAR)。这意味着可以使用似然比方法或多次插补方法获得有效推断。