Temple University, 1301 Cecil B. Moore Ave. Ritter Annex, 9th floor, Philadelphia, PA, 19122, USA.
GlaxoSmithKline, Philadelphia, USA.
BMC Med Res Methodol. 2020 Jun 26;20(1):168. doi: 10.1186/s12874-020-01053-4.
Causal effect estimation with observational data is subject to bias due to confounding, which is often controlled for using propensity scores. One unresolved issue in propensity score estimation is how to handle missing values in covariates.
Several approaches have been proposed for handling covariate missingness, including multiple imputation (MI), multiple imputation with missingness pattern (MIMP), and treatment mean imputation. However, there are other potentially useful approaches that have not been evaluated, including single imputation (SI) + prediction error (PE), SI + PE + parameter uncertainty (PU), and Generalized Boosted Modeling (GBM), which is a nonparametric approach for estimating propensity scores in which missing values are automatically handled in the estimation using a surrogate split method. To evaluate the performance of these approaches, a simulation study was conducted.
Results suggested that SI + PE, SI + PE + PU, MI, and MIMP perform almost equally well and better than treatment mean imputation and GBM in terms of bias; however, MI and MIMP account for the additional uncertainty of imputing the missingness.
Applying GBM to the incomplete data and relying on the surrogate split approach resulted in substantial bias. Imputation prior to implementing GBM is recommended.
由于混杂因素的影响,观察性数据的因果效应估计会存在偏差,而倾向评分通常可用于控制混杂因素。在倾向评分估计中,一个未解决的问题是如何处理协变量中的缺失值。
已经提出了几种处理协变量缺失值的方法,包括多重插补(MI)、带有缺失模式的多重插补(MIMP)和处理均值插补。然而,还有其他一些可能有用的方法尚未得到评估,包括单一插补(SI)+预测误差(PE)、SI+PE+参数不确定性(PU)和广义提升模型(GBM),这是一种非参数方法,用于估计倾向评分,其中缺失值在估计中使用替代分裂方法自动处理。为了评估这些方法的性能,进行了一项模拟研究。
结果表明,在偏差方面,SI+PE、SI+PE+PU、MI 和 MIMP 的表现几乎相同,并且优于处理均值插补和 GBM;然而,MI 和 MIMP 考虑了插补缺失值的额外不确定性。
将 GBM 应用于不完整数据并依赖于替代分裂方法会导致严重的偏差。建议在实施 GBM 之前进行插补。