Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University, Providence, RI, 02906, USA.
VA RR&D Center for Neurorestoration and Neurotechnology, Providence VA Medical Center, 830 Chalkstone Ave, Providence, RI, 02908, USA.
Eur Arch Psychiatry Clin Neurosci. 2021 Feb;271(1):29-37. doi: 10.1007/s00406-020-01172-5. Epub 2020 Jul 27.
Intermittent theta burst stimulation (iTBS) is a novel treatment approach for post-traumatic stress disorder (PTSD), and recent neuroimaging work indicates that functional connectivity profiles may be able to identify those most likely to respond. However, prior work has relied on functional magnetic resonance imaging, which is expensive and difficult to scale. Alternatively, electroencephalography (EEG) represents a different approach that may be easier to implement in clinical practice. To this end, we acquired an 8-channel resting-state EEG signal on participants before (n = 47) and after (n = 43) randomized controlled trial of iTBS for PTSD (ten sessions, delivered at 80% of motor threshold, 1,800 pulses, to the right dorsolateral prefrontal cortex). We used a cross-validated support vector machine (SVM) to track changes in EEG functional connectivity after verum iTBS stimulation. We found that an SVM classifier was able to successfully separate patients who received active treatment vs. sham treatment, with statistically significant findings in the Delta band (1-4 Hz, p = 0.002). Using Delta coherence, the classifier was 75.0% accurate in detecting sham vs. active iTBS, and observed changes represented an increase in functional connectivity between midline central/occipital and a decrease between frontal and central regions. The primary limitations of this work are the sparse electrode system and a modest sample size. Our findings raise the possibility that EEG and machine learning may be combined to provide a window into mechanisms of action of TMS, with the potential that these approaches can inform the development of individualized treatment methods.
经颅磁刺激(TMS)是一种治疗创伤后应激障碍(PTSD)的新方法,最近的神经影像学研究表明,功能连接模式可能能够识别出最有可能产生反应的人。然而,之前的研究依赖于功能磁共振成像(fMRI),这是一种昂贵且难以扩展的方法。相比之下,脑电图(EEG)代表了一种不同的方法,可能更容易在临床实践中实施。为此,我们在 PTSD 患者接受 iTBS 随机对照试验之前(n=47)和之后(n=43)采集了 8 通道静息态 EEG 信号(共 10 个疗程,刺激强度为运动阈值的 80%,1800 个脉冲,右侧背外侧前额叶)。我们使用交叉验证支持向量机(SVM)来跟踪真实 iTBS 刺激后 EEG 功能连接的变化。我们发现,SVM 分类器能够成功区分接受真实治疗和假治疗的患者,在 Delta 波段(1-4 Hz,p=0.002)有统计学意义。使用 Delta 相干性,分类器在检测假刺激和真实 iTBS 方面的准确率为 75.0%,观察到的变化代表了中线中央/枕叶和额区和中央区之间的功能连接增加。这项工作的主要局限性是电极系统稀疏和样本量小。我们的研究结果提出了 EEG 和机器学习相结合以提供 TMS 作用机制的可能性,这些方法可能有助于制定个性化的治疗方法。