Suppr超能文献

不同种族的跑步者在 2017 年柏林马拉松中用时 3 小时 30 分钟内的配速策略。

Different race pacing strategies among runners covering the 2017 Berlin Marathon under 3 hours and 30 minutes.

机构信息

Facultad de Ciencias de la Salud, Universidad Europea del Atlántico (UNEATLANTICO), Santander, Spain.

Runnea, Barakaldo, Spain.

出版信息

PLoS One. 2020 Jul 28;15(7):e0236658. doi: 10.1371/journal.pone.0236658. eCollection 2020.

Abstract

The purposes of this study were 1) to analyse the different pacing behaviours based on athlete's performance and 2) to determine whether significant differences in each race split and the runner's performance implied different race profiles. A total of 2295 runners, which took part in Berlin's marathon (2017), met the inclusion criteria. 4 different groups were created based on sex and performance. Men: Elite (<02:19:00 h), Top 1 (<02:30:00 h), Top 2 (<02:45:00 h) and Top 3 (<03:00:00 h); women: Elite (02:45:00 h), Top 1 (<03:00:00 h), Top 2 (<03:15:00 h), Top 3 (<03:30:00 h). With the aim of comparing the pacing between sex and performance the average speed was normalized. In men, no statistically significant changes were found between performance group and splits. A large number of significant differences between splits and groups were found amongst women: 5-10 km Top 2 vs Top 3 (P = 0.0178), 10-15 km Top1 vs Top 2 (P = 0.0211), 15-20 km Top1 vs Top 2 (P = 0.0382), 20-21.1 km Elite vs Top 2 (P = 0.0129); Elite vs Top 3 (P = 0.0020); Top1 vs Top 2 (P = 0.0233); Top 1 vs Top 3 (P = 0.0007), 25-30 km Elite vs Top 2 (P = 0.0273); Elite vs Top 3 (P = 0.0156), 30-35 km Elite vs Top 2 (P = 0.0096); Top 1 vs Top 2 (P = 0.0198); Top2 vs Top3 (P = 0.0069). In men there were little significant differences based on athletes' performance which implied a similar pacing behaviour. Women presented numerous differences based on their performance which suggested different pacing behaviours.

摘要

本研究的目的有 1)根据运动员的表现分析不同的配速行为,2)确定每个赛段和跑步者的表现是否存在显著差异是否意味着不同的比赛概况。共有 2295 名参加 2017 年柏林马拉松的跑步者符合纳入标准。根据性别和表现,创建了 4 个不同的组别。男子:精英(<02:19:00 h)、顶尖 1 名(<02:30:00 h)、顶尖 2 名(<02:45:00 h)和顶尖 3 名(<03:00:00 h);女子:精英(02:45:00 h)、顶尖 1 名(<03:00:00 h)、顶尖 2 名(<03:15:00 h)、顶尖 3 名(<03:30:00 h)。为了比较性别和表现之间的配速,平均速度被归一化。在男子中,在表现组和分段之间没有发现统计学上的显著差异。在女子中,分段和组之间存在大量显著差异:5-10 公里段顶尖 2 名与顶尖 3 名(P = 0.0178)、10-15 公里段顶尖 1 名与顶尖 2 名(P = 0.0211)、15-20 公里段顶尖 1 名与顶尖 2 名(P = 0.0382)、20-21.1 公里段精英与顶尖 2 名(P = 0.0129);精英与顶尖 3 名(P = 0.0020);顶尖 1 名与顶尖 2 名(P = 0.0233);顶尖 1 名与顶尖 3 名(P = 0.0007)、25-30 公里段精英与顶尖 2 名(P = 0.0273);精英与顶尖 3 名(P = 0.0156)、30-35 公里段精英与顶尖 2 名(P = 0.0096);顶尖 1 名与顶尖 2 名(P = 0.0198);顶尖 2 名与顶尖 3 名(P = 0.0069)。在男子中,根据运动员的表现,几乎没有显著差异,这意味着他们的配速行为相似。女子表现存在许多差异,表明她们的配速行为不同。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验