Suppr超能文献

DEBay:一种用于对定量PCR数据进行反卷积以估计混合群体中细胞类型特异性基因表达的计算工具。

DEBay: A computational tool for deconvolution of quantitative PCR data for estimation of cell type-specific gene expression in a mixed population.

作者信息

Devaraj Vimalathithan, Bose Biplab

机构信息

Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, India.

出版信息

Heliyon. 2020 Jul 22;6(7):e04489. doi: 10.1016/j.heliyon.2020.e04489. eCollection 2020 Jul.

Abstract

The expression of a gene is commonly estimated by quantitative PCR (qPCR) using RNA isolated from a large number of pooled cells. Such pooled samples often have subpopulations of cells with different levels of expression of the target gene. Estimation of gene expression from an ensemble of cells obscures the pattern of expression in different subpopulations. Physical separation of various subpopulations is a demanding task. We have developed a computational tool, Deconvolution of Ensemble through Bayes-approach (DEBay), to estimate cell type-specific gene expression from qPCR data of a mixed population. DEBay estimates Normalized Gene Expression Coefficient (NGEC), which is a relative measure of the expression of the target gene in each cell type in a population. NGEC has a direct algebraic correspondence with the normalized fold change in gene expression measured by qPCR. DEBay can deconvolute both time-dependent and -independent gene expression profiles. It uses the Bayesian method of model selection and parameter estimation. We have evaluated DEBay using synthetic and real experimental data. DEBay is implemented in Python. A GUI of DEBay and its source code are available for download at SourceForge (https://sourceforge.net/projects/debay).

摘要

基因的表达通常通过定量聚合酶链反应(qPCR)来估计,该方法使用从大量汇集细胞中分离出的RNA。此类汇集样本通常含有目标基因表达水平不同的细胞亚群。从一组细胞中估计基因表达会掩盖不同亚群中的表达模式。对各种亚群进行物理分离是一项艰巨的任务。我们开发了一种计算工具,即通过贝叶斯方法进行总体反卷积(DEBay),以从混合群体的qPCR数据中估计细胞类型特异性基因表达。DEBay估计标准化基因表达系数(NGEC),它是群体中每种细胞类型中目标基因表达的相对度量。NGEC与通过qPCR测量的基因表达标准化倍数变化具有直接代数对应关系。DEBay可以对时间依赖性和非依赖性基因表达谱进行反卷积。它使用贝叶斯模型选择和参数估计方法。我们使用合成和真实实验数据对DEBay进行了评估。DEBay用Python实现。DEBay的图形用户界面及其源代码可在SourceForge(https://sourceforge.net/projects/debay)上下载。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5d6c/7381708/a221b8159a7b/gr1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验