Agastinose Ronicko Jac Fredo, Thomas John, Thangavel Prasanth, Koneru Vineetha, Langs Georg, Dauwels Justin
School of Electrical and Electronics Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639 798, Singapore.
Computational Imaging Research Lab, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Waehringer Guertel 18-20, A-1090, Vienna, Austria.
J Neurosci Methods. 2020 Nov 1;345:108884. doi: 10.1016/j.jneumeth.2020.108884. Epub 2020 Jul 27.
Autism Spectrum Disorder (ASD) is a neurodevelopmental disability with altered connectivity in brain networks.
In this study, brain connections in Resting-state functional Magnetic Resonance Imaging (Rs-fMRI) of ASD and Typical Developing (TD) are analyzed by partial and full correlation methods such as Gaussian Graphical Least Absolute Shrinkage and Selection Operator (GLASSO), Max-Det Matrix Completion (MDMC), and Pearson Correlation Co-Efficient (PCCE). We investigated Functional Connectivity (FC) of ASD and TD brain from 238 functionally defined regions of interest. Furthermore, we constructed a series of feature sets by applying conditional random forests and conditional permutation importance. We built classifier models by Random Forest (RF), Oblique RF (ORF), Support Vector Machine (SVM), and Convolutional Neural Network (CNN) for each feature set. FC features are ranked based on p-value and we analyzed the top 20 FC features.
We achieved a single-trial test accuracy of 72.5 %, though MDMC-SVM and PCCE-CNN pipelines. Further, PCCE-CNN pipeline gives better average test accuracy (70.31 %) and area under the curve (0.73) compared to other pipelines. We found that top-20 PCCE based FC features are from networks such as Dorsal Attention (DA), Cingulo-Opercular Task Control (COTC), somatosensory motor hand and subcortical. In addition, among top 20 PCCE features, many FC links are found between COTC and DA (4 connections) which helped to discriminate the ASD and TD.
The generalized classifier models built in our study for highly heterogeneous participants perform better than previous studies with similar data sets and diagnostic groups.
自闭症谱系障碍(ASD)是一种神经发育障碍,其大脑网络连接发生改变。
在本研究中,通过诸如高斯图形最小绝对收缩和选择算子(GLASSO)、最大行列式矩阵补全(MDMC)以及皮尔逊相关系数(PCCE)等部分和完全相关方法,对自闭症谱系障碍(ASD)和典型发育(TD)个体静息态功能磁共振成像(Rs-fMRI)中的大脑连接进行分析。我们从238个功能定义的感兴趣区域研究了ASD和TD大脑的功能连接(FC)。此外,我们通过应用条件随机森林和条件排列重要性构建了一系列特征集。针对每个特征集,我们使用随机森林(RF)、斜随机森林(ORF)、支持向量机(SVM)和卷积神经网络(CNN)构建分类器模型。基于p值对FC特征进行排序,并分析了前20个FC特征。
通过MDMC-SVM和PCCE-CNN流程,我们实现了单次试验测试准确率达72.5%。此外,与其他流程相比,PCCE-CNN流程具有更好的平均测试准确率(70.31%)和曲线下面积(0.73)。我们发现基于PCCE的前20个FC特征来自诸如背侧注意(DA)、扣带回- opercular任务控制(COTC)、体感运动手和皮层下等网络。此外,在前20个PCCE特征中,发现COTC和DA之间有许多FC连接(4个连接),这有助于区分ASD和TD。
我们研究中为高度异质性参与者构建的广义分类器模型,比之前使用类似数据集和诊断组的研究表现更好。