Suppr超能文献

基于功能磁共振成像的多类别双模态诊断分类模型有效解码自闭症谱系障碍与注意力缺陷多动障碍之间的重叠情况。

fMRI-Based Multi-class DMDC Model Efficiently Decodes the Overlaps between ASD and ADHD.

作者信息

Zolghadr Zahra, Batouli Seyed Amir Hossein, Alavi Majd Hamid, Shafaghi Lida, Mehrabi Yadollah

机构信息

Department of Biostatistics, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.

Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.

出版信息

Basic Clin Neurosci. 2024 May-Jun;15(3):367-382. doi: 10.32598/bcn.2023.4302.1. Epub 2024 May 1.

Abstract

INTRODUCTION

Neurodevelopmental disorders comprise a group of neuropsychiatric conditions. Presently, behavior-based diagnostic approaches are utilized in clinical settings, but the overlapping features among these disorders obscure their recognition and management. Attention deficit hyperactivity disorder (ADHD) and autism spectrum disorder (ASD) have common characteristics across various levels, from genes to symptoms. Designing a computational framework based on the neuroimaging findings could provide a discriminative tool for ultimate more efficient treatment. Machine learning approaches, specifically classification methods are among the most applied techniques to reach this goal.

METHODS

We applied a novel two-level multi-class data maximum dispersion classifier (DMDC) algorithm to classify the functional neuroimaging data (utilizing datasets: ADHD-200 and autism brain imaging data exchange (ABIDE)) into two categories: Neurodevelopmental disorders (ASD and ADHD) or healthy participants, based on calculated functional connectivity values (statistical temporal correlation).

RESULTS

Our model achieved a total accuracy of 62% for healthy controls. Specifically, it demonstrated an accuracy of 51% for healthy subjects, 61% for autism spectrum disorder, and 84% for ADHD. The support vector machine (SVM) model achieved an accuracy of 46% for both the healthy control and ASD groups, while the ADHD group classification accuracy was estimated to be 84%. These two models showed similar classification indices for the ADHD group. However, the discrimination power was higher in the ASD class.

CONCLUSION

The method employed in this study demonstrated acceptable performance in classifying disorders and healthy conditions compared to the more commonly used SVM method. Notably, functional connections associated with the cerebellum showed discriminative power.

摘要

引言

神经发育障碍包括一组神经精神疾病。目前,临床环境中采用基于行为的诊断方法,但这些疾病之间重叠的特征使其识别和管理变得模糊。注意缺陷多动障碍(ADHD)和自闭症谱系障碍(ASD)在从基因到症状的各个层面都有共同特征。基于神经影像学发现设计一个计算框架可以提供一种更具区分性的工具,以实现最终更有效的治疗。机器学习方法,特别是分类方法是实现这一目标最常用的技术之一。

方法

我们应用一种新颖的两级多类数据最大离散度分类器(DMDC)算法,基于计算出的功能连接值(统计时间相关性),将功能神经影像学数据(利用数据集:ADHD-200和自闭症脑成像数据交换(ABIDE))分为两类:神经发育障碍(ASD和ADHD)或健康参与者。

结果

我们的模型对健康对照组的总准确率达到62%。具体而言,它对健康受试者的准确率为51%,对自闭症谱系障碍的准确率为61%,对ADHD的准确率为84%。支持向量机(SVM)模型对健康对照组和ASD组的准确率均为46%,而ADHD组的分类准确率估计为84%。这两个模型对ADHD组显示出相似的分类指标。然而,在ASD类别中辨别力更高。

结论

与更常用的SVM方法相比,本研究采用的方法在对疾病和健康状况进行分类方面表现出可接受的性能。值得注意的是,与小脑相关的功能连接显示出辨别力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1b79/11470894/a428c4c20cd0/BCN-15-367-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验