Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, DD1 5EH, Dundee, UK.
Centre for Structural Biology, Department of Life Sciences, Imperial College London, SW7 2AZ, London, UK.
Nat Commun. 2020 Jul 30;11(1):3807. doi: 10.1038/s41467-020-17647-x.
The human genome contains an estimated 600 ubiquitin E3 ligases, many of which are single-subunit E3s (ssE3s) that can bind to both substrate and ubiquitin-loaded E2 (E2~Ub). Within ssE3s structural disorder tends to be located in substrate binding and domain linking regions. RNF4 is a ssE3 ligase with a C-terminal RING domain and disordered N-terminal region containing SUMO Interactions Motifs (SIMs) required to bind SUMO modified substrates. Here we show that, although the N-terminal region of RNF4 bears no secondary structure, it maintains a compact global architecture primed for SUMO interaction. Segregated charged regions within the RNF4 N-terminus promote compaction, juxtaposing RING domain and SIMs to facilitate substrate ubiquitination. Mutations that induce a more extended shape reduce ubiquitination activity. Our result offer insight into a key step in substrate ubiquitination by a member of the largest ubiquitin ligase subtype and reveal how a defined architecture within a disordered region contributes to E3 ligase function.
人类基因组中大约含有 600 种泛素 E3 连接酶,其中许多是单亚基 E3 连接酶(ssE3s),可以同时结合底物和泛素化的 E2(E2~Ub)。在 ssE3s 中,结构无序通常位于底物结合和结构域连接区域。RNF4 是一种 ssE3 连接酶,具有 C 端 RING 结构域和无序的 N 端区域,该区域包含与 SUMO 修饰底物结合所需的 SUMO 相互作用基序(SIMs)。在这里,我们表明,尽管 RNF4 的 N 端区域没有二级结构,但它保持了一种紧凑的整体结构,为 SUMO 相互作用做好了准备。RNF4 N 端的分隔电荷区域促进了紧凑性,使 RING 结构域和 SIMs 并置,从而促进了底物的泛素化。诱导更扩展形状的突变会降低泛素化活性。我们的结果提供了对最大泛素连接酶亚型成员中底物泛素化的关键步骤的深入了解,并揭示了无序区域内的特定结构如何有助于 E3 连接酶的功能。