Department of Biostatistics, Indiana University, Indianapolis, Indiana.
Center of Computational Biology and Bioinformatics, Indiana University, Indianapolis, Indiana.
Biometrics. 2021 Sep;77(3):796-808. doi: 10.1111/biom.13347. Epub 2020 Aug 8.
Early-phase dose-finding clinical trials are often subject to the issue of late-onset outcomes. In phase I/II clinical trials, the issue becomes more intractable because toxicity and efficacy can be competing risk outcomes such that the occurrence of the first outcome will terminate the other one. In this paper, we propose a novel Bayesian adaptive phase I/II clinical trial design to address the issue of late-onset competing risk outcomes. We use the continuation-ratio model to characterize the trinomial response outcomes and the cause-specific hazard rate method to model the competing-risk survival outcomes. We treat the late-onset outcomes as missing data and develop a Bayesian data augmentation method to impute the missing data from the observations. We also propose an adaptive dose-finding algorithm to allocate patients and identify the optimal biological dose during the trial. Simulation studies show that the proposed design yields desirable operating characteristics.
早期阶段剂量发现临床试验通常存在迟发结局问题。在 I/II 期临床试验中,这个问题变得更加棘手,因为毒性和疗效可能是竞争风险结局,即第一个结局的发生将终止另一个结局。在本文中,我们提出了一种新的贝叶斯自适应 I/II 期临床试验设计来解决迟发竞争风险结局问题。我们使用连续比模型来描述三项反应结局,使用特定原因的风险率方法来建模竞争风险生存结局。我们将迟发结局视为缺失数据,并开发了一种贝叶斯数据扩充方法,从观察中推断缺失数据。我们还提出了一种自适应剂量发现算法,在试验期间分配患者并确定最佳生物学剂量。模拟研究表明,所提出的设计具有理想的操作特性。