Suppr超能文献

SCI:一种贝叶斯自适应 I/II 期剂量探索设计,用于考虑免疫疗法试验中半竞争风险结局。

SCI: A Bayesian adaptive phase I/II dose-finding design accounting for semi-competing risks outcomes for immunotherapy trials.

机构信息

Department of Statistics and Programming, Jiangsu Hengrui Pharmaceuticals Co. Ltd., Shanghai, China.

Department of Biostatistics and Health Data Science, Indiana University, Indianapolis, Indiana, USA.

出版信息

Pharm Stat. 2022 Sep;21(5):960-973. doi: 10.1002/pst.2209. Epub 2022 Mar 24.

Abstract

An immunotherapy trial often uses the phase I/II design to identify the optimal biological dose, which monitors the efficacy and toxicity outcomes simultaneously in a single trial. The progression-free survival rate is often used as the efficacy outcome in phase I/II immunotherapy trials. As a result, patients developing disease progression in phase I/II immunotherapy trials are generally seriously ill and are often treated off the trial for ethical consideration. Consequently, the happening of disease progression will terminate the toxicity event but not vice versa, so the issue of the semi-competing risks arises. Moreover, this issue can become more intractable with the late-onset outcomes, which happens when a relatively long follow-up time is required to ascertain progression-free survival. This paper proposes a novel Bayesian adaptive phase I/II design accounting for semi-competing risks outcomes for immunotherapy trials, referred to as the dose-finding design accounting for semi-competing risks outcomes for immunotherapy trials (SCI) design. To tackle the issue of the semi-competing risks in the presence of late-onset outcomes, we re-construct the likelihood function based on each patient's actual follow-up time and develop a data augmentation method to efficiently draw posterior samples from a series of Beta-binomial distributions. We propose a concise curve-free dose-finding algorithm to adaptively identify the optimal biological dose using accumulated data without making any parametric dose-response assumptions. Numerical studies show that the proposed SCI design yields good operating characteristics in dose selection, patient allocation, and trial duration.

摘要

免疫疗法试验通常采用 I/II 期设计来确定最佳的生物学剂量,这种设计在单次试验中同时监测疗效和毒性结果。无进展生存率通常被用作 I/II 期免疫疗法试验的疗效结果。因此,在 I/II 期免疫疗法试验中出现疾病进展的患者通常病情严重,出于伦理考虑,往往会在试验之外接受治疗。因此,疾病进展的发生将终止毒性事件,但反之则不然,因此会出现半竞争风险问题。此外,随着需要较长的随访时间来确定无进展生存率,晚期结果的出现会使这个问题变得更加棘手。本文提出了一种新的贝叶斯自适应 I/II 期设计,用于考虑免疫疗法试验中的半竞争风险结果,称为考虑免疫疗法试验中的半竞争风险结果的剂量发现设计(SCI 设计)。为了解决存在晚期结果时的半竞争风险问题,我们根据每个患者的实际随访时间重新构建似然函数,并开发了一种数据增强方法,从一系列 Beta-二项式分布中有效地抽取后验样本。我们提出了一种简洁的无曲线剂量发现算法,使用累积数据自适应地确定最佳的生物学剂量,而无需进行任何参数剂量反应假设。数值研究表明,所提出的 SCI 设计在剂量选择、患者分配和试验持续时间方面具有良好的操作特性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e274/9540421/ae9c93abe1db/PST-21-960-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验