Thall Peter F, Nguyen Hoang Q, Estey Elihu H
Department of Biostatistics, The University of Texas, MD Anderson Cancer Center, Houston, Texas 77030, USA.
Biometrics. 2008 Dec;64(4):1126-36. doi: 10.1111/j.1541-0420.2008.01009.x. Epub 2008 Mar 19.
A Bayesian sequential dose-finding procedure based on bivariate (efficacy, toxicity) outcomes that accounts for patient covariates and dose-covariate interactions is presented. Historical data are used to obtain an informative prior on covariate main effects, with uninformative priors assumed for all dose effect parameters. Elicited limits on the probabilities of efficacy and toxicity for each of a representative set of covariate vectors are used to construct bounding functions that determine the acceptability of each dose for each patient. Elicited outcome probability pairs that are equally desirable for a reference patient are used to define two different posterior criteria, either of which may be used to select an optimal covariate-specific dose for each patient. Because the dose selection criteria are covariate specific, different patients may receive different doses at the same point in the trial, and the set of eligible patients may change adaptively during the trial. The method is illustrated by a dose-finding trial in acute leukemia, including a simulation study.
本文提出了一种基于双变量(疗效、毒性)结果的贝叶斯序贯剂量探索程序,该程序考虑了患者协变量和剂量-协变量相互作用。利用历史数据获得协变量主效应的信息性先验,对所有剂量效应参数假设非信息性先验。通过对一组代表性协变量向量的每个向量的疗效和毒性概率进行引出限制,来构建边界函数,这些函数决定了每个患者对每个剂量的可接受性。对于参考患者同样期望的引出结果概率对,用于定义两个不同的后验标准,其中任何一个都可用于为每个患者选择最佳的协变量特定剂量。由于剂量选择标准是特定于协变量的,不同患者在试验的同一时间点可能接受不同剂量,并且合格患者组在试验期间可能会自适应地变化。通过急性白血病的剂量探索试验(包括模拟研究)对该方法进行了说明。