Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences, Shanghai 201602, China; University of Chinese Academy of Sciences, Beijing 100049, China.
Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences, Shanghai 201602, China.
Cell Host Microbe. 2020 Oct 7;28(4):548-557.e7. doi: 10.1016/j.chom.2020.07.003. Epub 2020 Jul 30.
Many bacterial plant pathogens employ a type III secretion system to inject effector proteins within plant cells to suppress plant immunity. Whether and how effector proteins also co-opt plant metabolism to support extensive bacterial replication remains an open question. Here, we show that Ralstonia solanacearum, the causal agent of bacterial wilt disease, secretes the effector protein RipI, which interacts with plant glutamate decarboxylases (GADs) to alter plant metabolism and support bacterial growth. GADs are activated by calmodulin and catalyze the biosynthesis of gamma-aminobutyric acid (GABA), an important signaling molecule in plants and animals. RipI promotes the interaction of GADs with calmodulin, enhancing the production of GABA. R. solanacearum is able to replicate efficiently using GABA as a nutrient, and both RipI and plant GABA contribute to a successful infection. This work reveals a pathogenic strategy to hijack plant metabolism for the biosynthesis of nutrients that support microbial growth during plant colonization.
许多植物病原菌利用 III 型分泌系统将效应蛋白注入植物细胞内,以抑制植物的免疫反应。效应蛋白是否以及如何也利用植物代谢来支持细菌的大量复制,仍然是一个悬而未决的问题。在这里,我们发现,引起青枯病的茄青枯雷尔氏菌分泌效应蛋白 RipI,该蛋白与植物谷氨酸脱羧酶(GADs)相互作用,改变植物代谢并支持细菌生长。GADs 被钙调蛋白激活,并催化γ-氨基丁酸(GABA)的生物合成,GABA 是植物和动物中一种重要的信号分子。RipI 促进 GADs 与钙调蛋白的相互作用,从而增强 GABA 的产生。雷尔氏菌能够有效地利用 GABA 作为营养物质进行复制,而 RipI 和植物 GABA 都有助于成功感染。这项工作揭示了一种致病策略,即劫持植物代谢来合成营养物质,以支持微生物在植物定殖过程中的生长。