Suppr超能文献

整合核磁共振与质谱技术以改进代谢组学分析:从方法到应用

Integrating NMR and MS for Improved Metabolomic Analysis: From Methodologies to Applications.

作者信息

Homobono Brito de Moura Patricia, Leleu Guillaume, Da Costa Grégory, Marti Guillaume, Pétriacq Pierre, Valls Fonayet Josep, Richard Tristan

机构信息

Bordeaux INP, INRAE, Bordeaux Sciences Agro, OENO, UMR 1366, ISVV, University of Bordeaux, 33140 Villenave d'Ornon, France.

Bordeaux Metabolome, MetaboHUB, PHENOME-EMPHASIS, 33140 Villenave d'Ornon, France.

出版信息

Molecules. 2025 Jun 17;30(12):2624. doi: 10.3390/molecules30122624.

Abstract

Metabolomics, the comprehensive analysis of low-molecular-weight metabolites (typically below 1500 DA) in biological systems, relies heavily on mass spectrometry (MS) and nuclear magnetic resonance (NMR) spectroscopy. Each technique has inherent strengths and weaknesses. MS offers high sensitivity and is commonly coupled with chromatography to analyze complex matrices, yet it is destructive, has limited reproducibility, and provides limited structural information. NMR, while less sensitive, is non-destructive and enables structural elucidation and precise quantification. Recent studies increasingly employ data fusion (DF) strategies to combine the complementary information from NMR and MS, aiming to enhance metabolomic analyses. This review summarizes DF methodologies using NMR and MS data in metabolomics studies over the past decade. A comprehensive search of SciFinder, Scopus, and Clarivate Web of Science databases was conducted to analyze fusion techniques, methods, and statistical models. The review emphasizes the growing importance of DF in metabolomics, showing its capacity to provide a more comprehensive view of biochemical processes across diverse biological systems, including clinical, plant, and food matrices.

摘要

代谢组学是对生物系统中低分子量代谢物(通常低于1500道尔顿)进行的全面分析,严重依赖于质谱(MS)和核磁共振(NMR)光谱技术。每种技术都有其固有的优缺点。质谱具有高灵敏度,通常与色谱联用分析复杂基质,但具有破坏性,重现性有限,且提供的结构信息有限。核磁共振虽然灵敏度较低,但具有非破坏性,能够进行结构解析和精确量化。最近的研究越来越多地采用数据融合(DF)策略来整合来自核磁共振和质谱的互补信息,旨在加强代谢组学分析。本综述总结了过去十年代谢组学研究中使用核磁共振和质谱数据的数据融合方法。对SciFinder、Scopus和科睿唯安科学网数据库进行了全面检索,以分析融合技术、方法和统计模型。该综述强调了数据融合在代谢组学中日益重要的地位,表明其有能力对包括临床、植物和食品基质在内的各种生物系统中的生化过程提供更全面的见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/33d9/12196070/248f029a4db1/molecules-30-02624-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验