Suppr超能文献

利用电子健康记录检测青少年糖尿病状态和类型:青少年糖尿病研究(SEARCH)

Detection of Diabetes Status and Type in Youth Using Electronic Health Records: The SEARCH for Diabetes in Youth Study.

作者信息

Wells Brian J, Lenoir Kristin M, Wagenknecht Lynne E, Mayer-Davis Elizabeth J, Lawrence Jean M, Dabelea Dana, Pihoker Catherine, Saydah Sharon, Casanova Ramon, Turley Christine, Liese Angela D, Standiford Debra, Kahn Michael G, Hamman Richard, Divers Jasmin

机构信息

Division of Public Health Sciences, Department of Biostatistics and Data Science, Wake Forest School of Medicine, Winston-Salem, NC

Division of Public Health Sciences, Department of Biostatistics and Data Science, Wake Forest School of Medicine, Winston-Salem, NC.

出版信息

Diabetes Care. 2020 Oct;43(10):2418-2425. doi: 10.2337/dc20-0063. Epub 2020 Jul 31.

Abstract

OBJECTIVE

Diabetes surveillance often requires manual medical chart reviews to confirm status and type. This project aimed to create an electronic health record (EHR)-based procedure for improving surveillance efficiency through automation of case identification.

RESEARCH DESIGN AND METHODS

Youth (<20 years old) with potential evidence of diabetes ( = 8,682) were identified from EHRs at three children's hospitals participating in the SEARCH for Diabetes in Youth Study. True diabetes status/type was determined by manual chart reviews. Multinomial regression was compared with an ICD-10 rule-based algorithm in the ability to correctly identify diabetes status and type. Subsequently, the investigators evaluated a scenario of combining the rule-based algorithm with targeted chart reviews where the algorithm performed poorly.

RESULTS

The sample included 5,308 true cases (89.2% type 1 diabetes). The rule-based algorithm outperformed regression for overall accuracy (0.955 vs. 0.936). Type 1 diabetes was classified well by both methods: sensitivity () (>0.95), specificity () (>0.96), and positive predictive value (PPV) (>0.97). In contrast, the PPVs for type 2 diabetes were 0.642 and 0.778 for the rule-based algorithm and the multinomial regression, respectively. Combination of the rule-based method with chart reviews ( = 695, 7.9%) of persons predicted to have non-type 1 diabetes resulted in perfect PPV for the cases reviewed while increasing overall accuracy (0.983). The , , and PPV for type 2 diabetes using the combined method were ≥0.91.

CONCLUSIONS

An ICD-10 algorithm combined with targeted chart reviews accurately identified diabetes status/type and could be an attractive option for diabetes surveillance in youth.

摘要

目的

糖尿病监测通常需要人工查阅病历以确认病情和类型。本项目旨在创建一种基于电子健康记录(EHR)的程序,通过病例识别自动化来提高监测效率。

研究设计与方法

从参与青少年糖尿病SEARCH研究的三家儿童医院的电子健康记录中识别出有潜在糖尿病证据的青少年(<20岁)(n = 8682)。通过人工查阅病历确定真正的糖尿病病情/类型。将多项回归分析与基于ICD - 10规则的算法在正确识别糖尿病病情和类型的能力方面进行比较。随后,研究人员评估了将基于规则的算法与在算法表现不佳时进行的针对性病历查阅相结合的方案。

结果

样本包括5308例确诊病例(89.2%为1型糖尿病)。基于规则的算法在总体准确性方面优于回归分析(0.955对0.936)。两种方法对1型糖尿病的分类都很好:敏感度(Sn)(>0.95)、特异度(Sp)(>0.96)和阳性预测值(PPV)(>0.97)。相比之下,基于规则的算法和多项回归分析对2型糖尿病的PPV分别为0.642和0.778。将基于规则的方法与对预计患有非1型糖尿病的人员进行的病历查阅(n = 695,7.9%)相结合,使得所查阅病例的PPV达到完美,同时提高了总体准确性(0.983)。使用联合方法时,2型糖尿病的Sn、Sp和PPV均≥0.91。

结论

一种结合了针对性病历查阅的ICD - 10算法能够准确识别糖尿病病情/类型,可能是青少年糖尿病监测的一个有吸引力的选择。

相似文献

引用本文的文献

4
Incidence of Diabetes Among Youth Before and During the COVID-19 Pandemic.新冠疫情前后青少年糖尿病发病率。
JAMA Netw Open. 2023 Sep 5;6(9):e2334953. doi: 10.1001/jamanetworkopen.2023.34953.

本文引用的文献

3
2. Classification and Diagnosis of Diabetes: .2. 糖尿病的分类和诊断:
Diabetes Care. 2019 Jan;42(Suppl 1):S13-S28. doi: 10.2337/dc19-S002.
5
Indexed Pain Journals.索引疼痛期刊。
J Pain Palliat Care Pharmacother. 2008;22(1):45-46. doi: 10.1080/15360280801989377.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验