University of Kansas Alzheimer's Disease Center, University of Kansas Medical Center, Kansas City, KS, United States.
Int Rev Neurobiol. 2020;154:207-233. doi: 10.1016/bs.irn.2020.01.008. Epub 2020 Jul 10.
Alzheimer's disease (AD) features mitochondrial dysfunction and altered metabolism. Other pathologies could drive these changes, or alternatively these changes could drive other pathologies. In considering this question, it is worth noting that perturbed AD patient mitochondrial and metabolism dysfunction extend beyond the brain and to some extent define a systemic phenotype. It is difficult to attribute this systemic phenotype to brain beta-amyloid or tau proteins. Conversely, mitochondria increasingly appear to play a critical role in cell proteostasis, which suggests that mitochondrial dysfunction may promote protein aggregation. Mitochondrial and metabolism-related characteristics also define AD endophenotypes in cognitively normal middle-aged individuals, which suggests that mitochondrial and metabolism-related AD characteristics precede clinical decline. Genetic analyses increasingly implicate mitochondria and metabolism-relevant genes in AD risk. Collectively these factors suggest that mitochondria are more relevant to the causes of AD than its consequences, and support the view that a mitochondrial cascade features prominently in AD. This chapter reviews the case for mitochondrial and metabolism dysfunction in AD and the challenges of proving that a primary mitochondrial cascade is pertinent to the disease.
阿尔茨海默病(AD)的特征是线粒体功能障碍和代谢改变。其他病理学可能导致这些变化,或者这些变化可能导致其他病理学。在考虑这个问题时,值得注意的是,受干扰的 AD 患者的线粒体和代谢功能障碍不仅限于大脑,在某种程度上还定义了一种系统性表型。很难将这种系统性表型归因于大脑中的β-淀粉样蛋白或tau 蛋白。相反,线粒体在细胞蛋白稳态中似乎越来越发挥关键作用,这表明线粒体功能障碍可能会促进蛋白质聚集。线粒体和代谢相关的特征也在认知正常的中年个体中定义了 AD 的内表型,这表明线粒体和代谢相关的 AD 特征先于临床衰退。遗传分析越来越多地将线粒体和代谢相关基因与 AD 风险联系起来。这些因素共同表明,线粒体与 AD 的病因比其后果更相关,并支持这样一种观点,即线粒体级联反应在 AD 中起着重要作用。本章回顾了 AD 中线粒体和代谢功能障碍的情况,并探讨了证明主要线粒体级联反应与该疾病相关的挑战。