Yuan Qiongjing, Zhang Haixia, Xie Yanyun, Lin Wei, Peng Liangang, Wang Liming, Huang Weihong, Feng Song, Xiao Xiangcheng
Department of Nephrology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, China.
Department of Nephrology, Second Affiliated Hospital of Soochow University, 1055 Sanxiang Road, Suzhou, 215000, Jiangsu, China.
Clin Exp Nephrol. 2020 Oct;24(10):865-875. doi: 10.1007/s10157-020-01909-5. Epub 2020 Aug 1.
Chronic kidney disease (CKD) stage 3 was divided into two subgroups by eGFR (45 mL/ min 1.73 m). There is difference in prevalence of CKD, racial differences, economic development, genetic, and environmental backgrounds between China and Western countries.
We used a computational intelligence model (CKD stage 3 Modeling, CSM) to distinguish CKD stage 3 with CKD stage 3a/3b by data distribution rules, pearson correlation coefficient (PCC), spearman correlation (SCC) analysis, logistic regression (LR), random forest (RF), support vector machine (SVM), and neural network (Nnet) to develop Prognostic Model for patients with CKD stage 3a/3b in South Central China. Furthermore, we used RF to discover risk factors of progression of CKD stage 3a and 3b to CKD stage 5. 1090 cases of CKD stage 3 patients in Xiangya Hospital were collected. Among them, 455 patients progressed to CKD stage 5 in a median follow-up of 4 years (IQR 4.295, 4.489).
We found that the common risk factors for progression of CKD stage 3a/3b to CKD stage 5 included albumin, creatinine, total protein, etc. Proteinuria, direct bilirubin, hemoglobin, etc. accounted for the progression from stage CKD stage 3a to stage 5. The risk factors for CKD stage 3b progression to stage 5 included low-density lipoprotein cholesterol, diabetes, eosinophil percentage, etc. CONCLUSIONS: CSM could be used as a point-of-care test to screen patients at high risk for disease progression, might allowing individualized therapeutic management.
慢性肾脏病(CKD)3期根据估算肾小球滤过率(eGFR)(45 mL/ min·1.73 m²)分为两个亚组。中国与西方国家在CKD患病率、种族差异、经济发展、遗传和环境背景方面存在差异。
我们使用一种计算智能模型(CKD 3期建模,CSM),通过数据分布规则、皮尔逊相关系数(PCC)、斯皮尔曼相关性(SCC)分析、逻辑回归(LR)、随机森林(RF)、支持向量机(SVM)和神经网络(Nnet),区分CKD 3期与CKD 3a/3b期,为中国中南部CKD 3a/3b期患者建立预后模型。此外,我们使用RF发现CKD 3a和3b期进展至CKD 5期的危险因素。收集了湘雅医院1090例CKD 3期患者。其中,455例患者在中位随访4年(四分位间距4.295,4.489)后进展至CKD 5期。
我们发现CKD 3a/3b期进展至CKD 5期的常见危险因素包括白蛋白、肌酐、总蛋白等。蛋白尿、直接胆红素、血红蛋白等因素占CKD 3a期进展至5期的比例。CKD 3b期进展至5期的危险因素包括低密度脂蛋白胆固醇、糖尿病、嗜酸性粒细胞百分比等。
CSM可作为一种即时检验方法,用于筛查疾病进展高危患者,可能有助于进行个体化治疗管理。