Suppr超能文献

通过微小RNA测序和数据挖掘对神经内分泌肿瘤进行特征描述和分类。

Characterizing and classifying neuroendocrine neoplasms through microRNA sequencing and data mining.

作者信息

Nanayakkara Jina, Tyryshkin Kathrin, Yang Xiaojing, Wong Justin J M, Vanderbeck Kaitlin, Ginter Paula S, Scognamiglio Theresa, Chen Yao-Tseng, Panarelli Nicole, Cheung Nai-Kong, Dijk Frederike, Ben-Dov Iddo Z, Kim Michelle Kang, Singh Simron, Morozov Pavel, Max Klaas E A, Tuschl Thomas, Renwick Neil

机构信息

Laboratory of Translational RNA Biology, Department of Pathology and Molecular Medicine, Queen's University, 88 Stuart Street, Kingston, ON K7L 3N6, Canada.

Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA.

出版信息

NAR Cancer. 2020 Sep;2(3):zcaa009. doi: 10.1093/narcan/zcaa009. Epub 2020 Jul 15.

Abstract

Neuroendocrine neoplasms (NENs) are clinically diverse and incompletely characterized cancers that are challenging to classify. MicroRNAs (miRNAs) are small regulatory RNAs that can be used to classify cancers. Recently, a morphology-based classification framework for evaluating NENs from different anatomical sites was proposed by experts, with the requirement of improved molecular data integration. Here, we compiled 378 miRNA expression profiles to examine NEN classification through comprehensive miRNA profiling and data mining. Following data preprocessing, our final study cohort included 221 NEN and 114 non-NEN samples, representing 15 NEN pathological types and 5 site-matched non-NEN control groups. Unsupervised hierarchical clustering of miRNA expression profiles clearly separated NENs from non-NENs. Comparative analyses showed that miR-375 and miR-7 expression is substantially higher in NEN cases than non-NEN controls. Correlation analyses showed that NENs from diverse anatomical sites have convergent miRNA expression programs, likely reflecting morphological and functional similarities. Using machine learning approaches, we identified 17 miRNAs to discriminate 15 NEN pathological types and subsequently constructed a multilayer classifier, correctly identifying 217 (98%) of 221 samples and overturning one histological diagnosis. Through our research, we have identified common and type-specific miRNA tissue markers and constructed an accurate miRNA-based classifier, advancing our understanding of NEN diversity.

摘要

神经内分泌肿瘤(NENs)是临床上具有多样性且特征不完全明确的癌症,其分类颇具挑战性。微小RNA(miRNA)是可用于癌症分类的小型调节RNA。最近,专家们提出了一种基于形态学的分类框架,用于评估来自不同解剖部位的NENs,要求改进分子数据整合。在此,我们汇编了378个miRNA表达谱,通过全面的miRNA谱分析和数据挖掘来研究NEN的分类。经过数据预处理后,我们最终的研究队列包括221个NEN样本和114个非NEN样本,代表15种NEN病理类型和5个部位匹配的非NEN对照组。miRNA表达谱的无监督层次聚类清晰地将NENs与非NENs区分开来。比较分析表明,NEN病例中miR-375和miR-7的表达明显高于非NEN对照组。相关性分析表明,来自不同解剖部位的NENs具有趋同的miRNA表达程序,可能反映了形态和功能上的相似性。使用机器学习方法,我们鉴定出17个miRNA来区分15种NEN病理类型,随后构建了一个多层分类器,正确识别了221个样本中的217个(98%),并推翻了一项组织学诊断。通过我们的研究,我们鉴定出了常见的和特定类型的miRNA组织标志物,并构建了一个基于miRNA的准确分类器,增进了我们对NEN多样性的理解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5022/8210341/032b1981d86f/zcaa009fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验