Wong Justin J M, Ginter Paula S, Tyryshkin Kathrin, Yang Xiaojing, Nanayakkara Jina, Zhou Zier, Tuschl Thomas, Chen Yao-Tseng, Renwick Neil
Laboratory of Translational RNA Biology, Department of Pathology and Molecular Medicine, Queen's University, Kingston, ON K7L 3N6, Canada.
Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10065, USA.
Cancers (Basel). 2020 Sep 17;12(9):2653. doi: 10.3390/cancers12092653.
Lung neuroendocrine neoplasms (NENs) can be challenging to classify due to subtle histologic differences between pathological types. MicroRNAs (miRNAs) are small RNA molecules that are valuable markers in many neoplastic diseases. To evaluate miRNAs as classificatory markers for lung NENs, we generated comprehensive miRNA expression profiles from 14 typical carcinoid (TC), 15 atypical carcinoid (AC), 11 small cell lung carcinoma (SCLC), and 15 large cell neuroendocrine carcinoma (LCNEC) samples, through barcoded small RNA sequencing. Following sequence annotation and data preprocessing, we randomly assigned these profiles to discovery and validation sets. Through high expression analyses, we found that miR-21 and -375 are abundant in all lung NENs, and that miR-21/miR-375 expression ratios are significantly lower in carcinoids (TC and AC) than in neuroendocrine carcinomas (NECs; SCLC and LCNEC). Subsequently, we ranked and selected miRNAs for use in miRNA-based classification, to discriminate carcinoids from NECs. Using miR-18a and -155 expression, our classifier discriminated these groups in discovery and validation sets, with 93% and 100% accuracy. We also identified miR-17, -103, and -127, and miR-301a, -106b, and -25, as candidate markers for discriminating TC from AC, and SCLC from LCNEC, respectively. However, these promising findings require external validation due to sample size.
由于病理类型之间存在细微的组织学差异,肺神经内分泌肿瘤(NENs)的分类可能具有挑战性。微小RNA(miRNA)是小RNA分子,在许多肿瘤性疾病中是有价值的标志物。为了评估miRNA作为肺NENs的分类标志物,我们通过条形码小RNA测序,从14例典型类癌(TC)、15例非典型类癌(AC)、11例小细胞肺癌(SCLC)和15例大细胞神经内分泌癌(LCNEC)样本中生成了全面的miRNA表达谱。经过序列注释和数据预处理后,我们将这些谱随机分配到发现集和验证集。通过高表达分析,我们发现miR-21和-375在所有肺NENs中都很丰富,并且类癌(TC和AC)中的miR-21/miR-375表达比率显著低于神经内分泌癌(NECs;SCLC和LCNEC)。随后,我们对用于基于miRNA的分类的miRNA进行排序和选择,以区分类癌和NECs。利用miR-18a和-155的表达,我们的分类器在发现集和验证集中区分了这些组,准确率分别为93%和100%。我们还分别鉴定出miR-17、-103和-127,以及miR-30la、-106b和-25,作为区分TC与AC以及SCLC与LCNEC的候选标志物。然而,由于样本量的原因,这些有前景的发现需要外部验证。