Suppr超能文献

通过可逆断裂和形成双氧键实现的受酶启发的室温锂-氧化学

Enzyme-Inspired Room-Temperature Lithium-Oxygen Chemistry via Reversible Cleavage and Formation of Dioxygen Bonds.

作者信息

Wang Chengyi, Zhang Zihe, Liu Weiwei, Zhang Qinming, Wang Xin-Gai, Xie Zhaojun, Zhou Zhen

机构信息

School of Materials Science and Engineering, Institute of New Energy Material Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center (ReCast), Nankai University, Tianjin, 300350, China.

Engineering Research Center of Advanced Functional Material Manufacturing of Ministry of Education, School of Chemical Engineering, Zhengzhou University, Zhengzhou, 450001, China.

出版信息

Angew Chem Int Ed Engl. 2020 Oct 5;59(41):17856-17863. doi: 10.1002/anie.202009792. Epub 2020 Sep 7.

Abstract

Li-O batteries are promising energy storage systems due to their ultra-high theoretical capacity. However, most Li-O batteries are based on the reduction/oxidation of Li O and involve highly reactive superoxide and peroxide species that would cause serious degradation of cathodes, especially carbon-based materials. It is important to explore lithium-oxygen reactions and find new Li-O chemistry which can restrict or even avoid the negative influence of superoxide/peroxide species. Here, inspired by enzyme-catalyzed oxygen reduction/oxidation reactions, we introduce a copper(I) complex 3 N-Cu (3 N=1,4,7-trimethyl-1,4,7-triazacyclononane) to Li-O batteries and successfully modulate the reaction pathway to a moderate one on reversible cleavage/formation of O-O bonds. This work demonstrates that the reaction pathways of Li-O batteries could be modulated by introducing an appropriate soluble catalyst, which is another powerful choice to construct better Li-O batteries.

摘要

锂氧电池因其超高的理论容量而成为很有前景的储能系统。然而,大多数锂氧电池基于LiO的还原/氧化反应,涉及高活性的超氧化物和过氧化物物种,这会导致阴极严重降解,尤其是碳基材料。探索锂氧反应并找到新的锂氧化学体系以限制甚至避免超氧化物/过氧化物物种的负面影响非常重要。在此,受酶催化的氧还原/氧化反应启发,我们将一种铜(I)配合物3 N-Cu(3 N = 1,4,7-三甲基-1,4,7-三氮杂环壬烷)引入锂氧电池,并成功地将反应途径调节为在O-O键可逆断裂/形成时较为温和的途径。这项工作表明,通过引入合适的可溶性催化剂可以调节锂氧电池的反应途径,这是构建性能更好的锂氧电池的另一个有力选择。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验