Suppr超能文献

基于部分点标注的弱监督深度学习细胞核分割方法在病理图像中的应用

Weakly Supervised Deep Nuclei Segmentation Using Partial Points Annotation in Histopathology Images.

出版信息

IEEE Trans Med Imaging. 2020 Nov;39(11):3655-3666. doi: 10.1109/TMI.2020.3002244. Epub 2020 Oct 28.

Abstract

Nuclei segmentation is a fundamental task in histopathology image analysis. Typically, such segmentation tasks require significant effort to manually generate accurate pixel-wise annotations for fully supervised training. To alleviate such tedious and manual effort, in this paper we propose a novel weakly supervised segmentation framework based on partial points annotation, i.e., only a small portion of nuclei locations in each image are labeled. The framework consists of two learning stages. In the first stage, we design a semi-supervised strategy to learn a detection model from partially labeled nuclei locations. Specifically, an extended Gaussian mask is designed to train an initial model with partially labeled data. Then, self-training with background propagation is proposed to make use of the unlabeled regions to boost nuclei detection and suppress false positives. In the second stage, a segmentation model is trained from the detected nuclei locations in a weakly-supervised fashion. Two types of coarse labels with complementary information are derived from the detected points and are then utilized to train a deep neural network. The fully-connected conditional random field loss is utilized in training to further refine the model without introducing extra computational complexity during inference. The proposed method is extensively evaluated on two nuclei segmentation datasets. The experimental results demonstrate that our method can achieve competitive performance compared to the fully supervised counterpart and the state-of-the-art methods while requiring significantly less annotation effort.

摘要

细胞核分割是组织病理学图像分析中的基本任务。通常,此类分割任务需要大量的人工努力来手动生成完全监督训练所需的精确像素级注释。为了减轻这种繁琐和手动的工作,本文提出了一种基于部分点注释的新型弱监督分割框架,即仅对每张图像中的一小部分细胞核位置进行标记。该框架由两个学习阶段组成。在第一阶段,我们设计了一种半监督策略,从部分标记的细胞核位置学习检测模型。具体来说,设计了一个扩展高斯掩模,用部分标记的数据训练初始模型。然后,提出了自我训练与背景传播相结合的方法,利用未标记区域来提高细胞核检测的性能并抑制假阳性。在第二阶段,以弱监督的方式从检测到的细胞核位置训练分割模型。从检测到的点中推导出两种具有互补信息的粗标签,并利用它们来训练深度神经网络。在训练过程中使用全连接条件随机场损失进一步细化模型,而在推理过程中不会引入额外的计算复杂度。在两个细胞核分割数据集上进行了广泛的评估实验,实验结果表明,与完全监督方法和最新方法相比,我们的方法可以在需要更少注释工作的情况下实现具有竞争力的性能。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验