Jin Xu, An Hong, Chi Mengxian
School of Computer Science and Technology, University of Science and Technology of China, Hefei 230000, China.
Bioengineering (Basel). 2024 Aug 10;11(8):814. doi: 10.3390/bioengineering11080814.
Recent advances in deep learning have shown significant potential for accurate cell detection via density map regression using point annotations. However, existing deep learning models often struggle with multi-scale feature extraction and integration in complex histopathological images. Moreover, in multi-class cell detection scenarios, current density map regression methods typically predict each cell type independently, failing to consider the spatial distribution priors of different cell types. To address these challenges, we propose CellRegNet, a novel deep learning model for cell detection using point annotations. CellRegNet integrates a hybrid CNN/Transformer architecture with innovative feature refinement and selection mechanisms, addressing the need for effective multi-scale feature extraction and integration. Additionally, we introduce a contrastive regularization loss that models the mutual exclusiveness prior in multi-class cell detection cases. Extensive experiments on three histopathological image datasets demonstrate that CellRegNet outperforms existing state-of-the-art methods for cell detection using point annotations, with F1-scores of 86.38% on BCData (breast cancer), 85.56% on EndoNuke (endometrial tissue) and 93.90% on MBM (bone marrow cells), respectively. These results highlight CellRegNet's potential to enhance the accuracy and reliability of cell detection in digital pathology.
深度学习的最新进展显示出通过使用点注释的密度图回归进行精确细胞检测的巨大潜力。然而,现有的深度学习模型在复杂的组织病理学图像中的多尺度特征提取和整合方面常常面临困难。此外,在多类细胞检测场景中,当前的密度图回归方法通常独立预测每种细胞类型,而没有考虑不同细胞类型的空间分布先验。为了应对这些挑战,我们提出了CellRegNet,一种使用点注释进行细胞检测的新型深度学习模型。CellRegNet集成了混合的CNN/Transformer架构以及创新的特征细化和选择机制,满足了有效进行多尺度特征提取和整合的需求。此外,我们引入了一种对比正则化损失,用于对多类细胞检测案例中的互斥先验进行建模。在三个组织病理学图像数据集上进行的广泛实验表明,CellRegNet在使用点注释进行细胞检测方面优于现有的最先进方法,在BCData(乳腺癌)上的F1分数为86.38%,在EndoNuke(子宫内膜组织)上为85.56%,在MBM(骨髓细胞)上为93.90%。这些结果凸显了CellRegNet在提高数字病理学中细胞检测的准确性和可靠性方面的潜力。