Suppr超能文献

基于稀疏点标注的弱监督组织病理学图像分割。

Weakly Supervised Histopathology Image Segmentation With Sparse Point Annotations.

出版信息

IEEE J Biomed Health Inform. 2021 May;25(5):1673-1685. doi: 10.1109/JBHI.2020.3024262. Epub 2021 May 11.

Abstract

Digital histopathology image segmentation can facilitate computer-assisted cancer diagnostics. Given the difficulty of obtaining manual annotations, weak supervision is more suitable for the task than full supervision is. However, most weakly supervised models are not ideal for handling severe intra-class heterogeneity and inter-class homogeneity in histopathology images. Therefore, we propose a novel end-to-end weakly supervised learning framework named WESUP. With only sparse point annotations, it performs accurate segmentation and exhibits good generalizability. The training phase comprises two major parts, hierarchical feature representation and deep dynamic label propagation. The former uses superpixels to capture local details and global context from the convolutional feature maps obtained via transfer learning. The latter recognizes the manifold structure of the hierarchical features and identifies potential targets with the sparse annotations. Moreover, these two parts are trained jointly to improve the performance of the whole framework. To further boost test performance, pixel-wise inference is adopted for finer prediction. As demonstrated by experimental results, WESUP is able to largely resolve the confusion between histological foreground and background. It outperforms several state-of-the-art weakly supervised methods on a variety of histopathology datasets with minimal annotation efforts. Trained by very sparse point annotations, WESUP can even beat an advanced fully supervised segmentation network.

摘要

数字病理图像分割可以辅助癌症诊断。由于获取手动标注较为困难,弱监督比全监督更适合该任务。然而,大多数弱监督模型都不能很好地处理病理图像中严重的类内异质性和类间同质性。因此,我们提出了一种名为 WESUP 的全新端到端弱监督学习框架。它仅使用稀疏点标注即可实现精确分割,具有良好的泛化能力。训练阶段包括两个主要部分:层次特征表示和深度动态标签传播。前者使用超像素从通过迁移学习获得的卷积特征图中捕获局部细节和全局上下文。后者识别层次特征的流形结构,并利用稀疏标注识别潜在目标。此外,这两个部分是联合训练的,以提高整个框架的性能。为了进一步提高测试性能,采用像素级推理进行更精细的预测。实验结果表明,WESUP 可以很大程度上解决组织学前景和背景之间的混淆问题。它在各种病理数据集上的表现优于几种最先进的弱监督方法,并且只需最小的标注工作量。使用非常稀疏的点标注训练的 WESUP 甚至可以击败先进的全监督分割网络。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验